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1. Introduction. The use of transforms is one of the pervasive ideas in math-
ematics and the sciences. From a pragmatic point of view a transformation can
be regarded as a tool for simplifying an otherwise difficult operation, for example
by turning a differential equation into a simple algebraic equation with the help of
Laplace transforms. Even the formula log(x · y) = log x + log y in connection with
the traditional use of logarithmic tables and slide-rules may be seen in this light.
Transforming an object may also provide insight into its structure, for example by
writing a periodic function as a superposition of sine waves. From a theoretical
point of view transforms of the type considered below are at the core of major
mathematical theories such as harmonic analysis, they have initiated research that
spans the whole range of contemporary mathematics.

2. Definitions. Given a real random variable X on a probability space (Ω,A, P )
we define its characteristic function φX by

φX(θ) := EeiθX for all θ ∈ R.

This function depends on X only through its distribution L(X), the image P X of
P under X ; if we refer to this law, we will speak of the Fourier transform. This
provides the connection to classical Fourier analysis. For example, if X has density
f , then φX(θ) =

∫

eiθxf(x) dx coincides with what is known in other areas as the
Fourier transform of the function f . Some properties of characteristic functions are
straightforward consequences of their definition, for example their uniform conti-
nuity or the interplay with affine transformations,

φaX+b(θ) = eiθb φX(aθ).

A variety of other integral transforms are in common use. If X is non-negative,
for example, then Ee−tX exists for all t ≥ 0; as a function of t this results in the
Laplace transform. Similarly, t 7→ EetX is the moment generating function. If X
has non-negative integer values only then gX defined by

gX(z) := EzX =
∞
∑

k=0

P (X = k) zk for all z ∈ C , |z| ≤ 1

is the probability generating function associated with (the distribution of) X . Char-
acteristic functions are basic in the sense that they always exist and that they spawn
the other transforms mentioned above: Laplace transforms, for example, can be
obtained by analytic continuation of φX into the upper half of the complex plane,
and obviously φX(θ) = gX(eiθ).

The definition of characteristic functions extends in a straightforward manner to
random vectors X = (X1, . . . , Xd),

φX : R
d → C, θ = (θ1, . . . , θd) 7→ Eei〈θ,X〉 with 〈θ, X〉 =

d
∑

l=1

θlXl.

Finally, as an example of an infinite dimensional integral transform we mention the
probability generating functional, an important tool in point process theory.
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3. Main results. In general, transforms will only be useful if they can be
‘undone’. For example, the individual probabilities can be recovered from the

derivatives of the probability generating function via P (X = k) = g
(k)
X (0)/k!. For

characteristic functions we have the following result. Throughout, X, Y, X1, X2, . . .
are random variables with characteristic functions φX , φY , φX1

, φX2
. . . respectively.

Theorem 1 (Inversion Formula) For all a, b ∈ R, −∞ < a < b < ∞,

P (X = a)

2
+ P (a < X < b) +

P (X = b)

2
= lim

T→∞

1

2π

∫ T

−T

e−iθa − e−iθb

iθ
φX(θ) dθ.

As a corollary we obtain that φX = φY implies L(X) = L(Y ), a statement also
known as the Uniqueness Theorem. If

∫

|φX(θ)| dθ < ∞, then X has a density f
given by f(x) = (2π)−1

∫

e−iθxφX(θ) dθ.
To a large extent the simplifying potential of integral transforms is captured by

the following results. The first of these shows that convolution of distributions be-
comes multiplication on the transform side, the second provides an explicit formula
that can be used to calculate the moments of a distribution from its transform. The
third theorem shows that convergence in distribution, which we denote by →distr,
becomes pointwise convergence on the transform side.

Theorem 2 (Convolution Theorem) If X and Y are independent, then

φX+Y (θ) = φX(θ) · φY (θ) for all θ ∈ R.

This obviously extends to finite sums by induction. Of particular interest in
insurance mathematics is the extension to random sums: If N, X1, X2, . . . are inde-
pendent, N integer valued with probability generating function gN and Xn, n ∈ N,
identically distributed with characteristic function φX , then the characteristic func-
tion of the random sum S :=

∑N
n=1 Xn is given by φS(θ) = gN

(

φX(θ)
)

.

Theorem 3 If E|X |k < ∞, k ∈ N, then EXk = (−i)kφ
(k)
X (0). Conversely, if

the kth derivative of φX at 0 exists and k ∈ N is even, then EXk < ∞.

This theorem is the prototype of results that connect the behaviour of φX(θ) at
θ = 0 to the behaviour of the tails P (|X | ≥ x) at x = ∞.

Theorem 4 (Continuity Theorem) Xn →distr X if and only if

lim
n→∞

φXn
(θ) = φX(θ) for all θ ∈ R.

In combination these theorems can be used, for example, to obtain a simple
and straightforward proof of the Central Limit Theorem. Many other results can
be expressed or proved succinctly with transforms; the operation of exponential
tilting, for example, appears as a shift in the complex domain. The extension to
the multivariate case of the above theorems leads to the very useful property that
the distribution of a random vector is specified by the distributions of the linear
combinations of its components; in connection with limit results this is known as
the Cramér-Wold device.
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4. Numerical use of transforms. Variants of Fourier analysis are available
on structures other than those considered above. A case of tremendous practi-
cal importance is that of the finite cyclic groups ZM := {0, 1, . . . , M − 1} with
summation modulo M . Let ωM := e2πi/M be the primitive Mth root of unity.
Measures on ZM , such as the distribution of some ZM -valued random quantity
X , are represented by vectors p = (p0, . . . , pM−1), pl = P (X = l). The discrete

Fourier transform (DFT) of such a p is given by

p̂ = (p̂0, . . . , p̂M−1), p̂k =

M−1
∑

l=0

pl ω
kl
M .

Inversion takes on the very simple form

pl =
1

M

M−1
∑

k=0

p̂k ω−lk
M , l = 0, . . . , M − 1.

The matrices associated with the linear operators p 7→ p̂ and p̂ 7→ p on C
M are of a

very special form which for composite M can be exploited to reduce the number of
complex multiplications from the order M2, in a naive translation of the definition
into an algorithm, to the order M log M , if M is a power of 2. This results in
the fast Fourier transform algorithm (FFT), generally regarded as one of the most
important algorithmic inventions of the twentieth century (though, in fact, it can
be traced back to Gauß).

For certain problems the real line is indistinguishable from a sufficiently large
cyclic group. For example, if interest is in the distribution of the sum of the results
in ten throws of a fair dice then, provided that M > 60, the one line

Re(fft(fft(p)^10,inverse=TRUE)/M)

with a suitable vector p will give the exact result, apart from errors due to the float-
ing point representation of real numbers in the computer⋆). In general, however,
two approximation steps will be needed — discretization (and rescaling), which
means the lumping together of masses of intervals of the type ((k−1/2)h, (k+1/2)h]
to a single k ∈ Z and truncation, which means that mass outside {0, 1, . . . , M − 1}
is ignored. The resulting discretization and aliasing (or wrap-around) errors can
be made small by choosing h small enough and M big enough, requirements that
underline the importance of a fast algorithm.

5. An example. The exponential distribution with parameter η has density
x 7→ ηe−ηx, x ≥ 0. A straightforward computation shows that φX(θ) = η/(η − iθ)
for a random variable X with this distribution. As an example for probability
generating functions let N have the Poisson distribution with parameter κ, then
gN (z) = exp

(

κ(z − 1)
)

. In the classical Sparre Anderson model of risk theory
claims arrive according to a Poisson process with intensity λ, claims are identically

⋆) Here we have chosen the language R (see http://cran.r-project.org), but the line

should be self-explanatory.
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distributed and are independent of each other and also of the arrival process. Then
the total claim size St up to time t is a Poisson random sum; if claims are ex-
ponentially distributed with parameter η then the formula given after Theorem 2
yields

φSt
(θ) = exp

(

λt
( η

η − iθ
− 1
)

)

.

Using Theorem 3 we obtain ESt = λt/η and var(St) = −φ′′
St

(0)+φ′
St

(0)2 = 2λt/η2.

The standardized variable S̃t = (St − ESt)/
√

var(St) has characteristic function

φS̃t
(θ) = exp

(

−i

√

λt

2
θ

)

φSt

(

ηθ√
2λt

)

= exp

(

− 1
2θ2

1 − iθ√
2λt

)

,

which converges to exp(−θ2/2) as t → ∞. This is the Fourier transform of the
standard normal distribution, hence S̃t is asymptotically normal by the continuity
theorem. This can be used to approximate the quantiles of the compound distri-
bution: If qα is the value that a standard normal random variable exceeds with
probability 1−α, then St is less than ESt +qα

√
varSt with probability α, provided

that the normal approximation error can be ignored.
A DFT/FFT-based numerical approximation of the compound distribution in

this example begins by choosing a discretization parameter h and a truncation
parameter M , the latter a power of 2. The exponential claim size distribution is
replaced by the values

ph,k := P

(

(

k − 1

2

)

h < X1 ≤
(

k +
1

2

)

h

)

, k = 0, . . . , M − 1.

The aliasing error is bounded by the probability that the compound distribution as-
signs to the interval

(

(M −1/2)h,∞
)

. The discretization implies that the quantiles
can at best be accurate up to h/2. In the present example there is a straightfor-
ward series expansion for the density of St, based on the gamma distributions. We
are therefore in a position to compare the different approximations with the exact
result. This is done in the table below where we have chosen η = 1 which means
that monetary units are chosen such that the average claim size is 1, λt = 10.

α 0.900 0.990 0.995 0.999

normal approximation 15.731 20.403 21.519 23.820
FFT: M = 1024, h = 0.05 16.025 22.525 24.225 27.975
FFT: M = 32768, h = 0.002 15.983 22.495 24.211 27.949
exact values (±10−3) 15.983 22.494 24.212 27.948

Table 1: Quantiles and approximations

6. Notes. Historically integral transforms have served as one of the main links
between probability and analysis, they are at the core of classical probability theory.
The monograph Lukacs (1970) has been very influential, Kawata (1972) is another
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standard text. In view of this venerable history it is interesting to note that this
area still has a lot to offer: For example, Diaconis (1988) explains the use of
non-commutative Fourier analysis in applications ranging from card shuffling to
variance analysis.

A standard reference for the fast Fourier transform algorithm is Brigham (1974),
Banks (1996) contains some interesting historical material. Bühlmann (1984) com-
pares FFT and Panjer recursion in the context of computation of compound Pois-
son distributions. An overview of FFT applications in insurance mathematics is
given in Embrechts, Grübel and Pitts (1993). Aliasing errors can be reduced by
exponential tilting, see Grübel and Hermesmeier (1999), discretization errors by
Richardson extrapolation, see Grübel and Hermesmeier (2000).
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