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ON THE TOTAL TIME SPENT IN RECORDS
BY A DISCRETE UNIFORM SEQUENCE
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Abstract

We consider the sum Sd of record values in a sequence of independent random variables
that are uniformly distributed on 1, . . . , d. This sum can be interpreted as the total amount
of time spent in record lifetimes in the standard renewal theoretic setup. We investigate
the distributional limit of Sd and some related quantities as d → ∞. Some explicit values
are given for d = 6, a case that can be interpreted as a simple game of chance.
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1. Introduction and results

Let (Ud,n)n∈N be a sequence of independent random variables, all uniformly distributed on
the set {1, . . . , d}. Here d is an integer that we assume to be greater than 1 to avoid trivialities;
for d = 6 we obtain the standard model for the repeated toss of a fair die. We call the ith value
Ud,i in this sequence a max-record if Ud,i > Ud,j for j = 1, . . . , i − 1; similarly, Ud,i is a
min-record if Ud,i < Ud,j for j = 1, . . . , i − 1. In both cases we regard the first value Ud,1 as
a record. The central objects of this note are the record sums

S+
d :=

∞∑
n=1

( ∏
m<n

1{Ud,n>Ud,m}
)
Ud,n, S−

d :=
∞∑
n=1

( ∏
m<n

1{Ud,n<Ud,m}
)
Ud,n.

Throughout the paper we use the convention that an empty product has the value 1 and we let
1A denote the indicator function of the set A. Obviously, there can be at most d records of
either kind in the whole sequence, so these sums are always finite.

Our motivation for this investigation was as follows. Perhaps least reputable, but in line with
the history of probability, is the application to a simple game of chance: suppose a fair die is
thrown repeatedly, the player wins the record total (S+

6 in the above setup). Here is an actual
data set, with ‘�’ and ‘�’ denoting the respective max- and min-records and S+

6 = 15:

� � �
4 4 2 2 5 3 4 3 2 1 3 2 3 2 3 1 6� � �

Obviously, if the first throw results in ‘6’, then the game ends with the minimal win possible;
the maximum of 21 arises if none of the values from 1 to 6 is skipped. What is the fair price for
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this game? Or, alternatively, if the player wins if the record sum is equal to or greater than k:
up to which k is this a favourable game? What are the (approximate) answers to these questions
if the die has d sides, with d large? For d = 6 the exact answers are given in Section 3 below.

Second, we believe that there is an interesting methodological aspect. We could regard the
distributions of interest as elements of some space of probability measures and then proceed
with (functional) analytic techniques; again, see Section 3 below. Instead we offer a more
probabilistic approach via an almost sure construction based on a suitable background stochastic
process that drives a whole family of models (here, those for different d).

Third, this note is part of an ongoing project with the aim of understanding records in
renewal theory. For records in general we refer the reader to Chapter 4 in Resnick (1987) and
the recent book by Arnold et al. (1998). In the standard model of renewal theory, nonnegative
random variables Xn, n ∈ N, are regarded as lifetimes of successive pieces of equipment.
These are replaced immediately upon failure so that Sn := ∑n

m=1 Xm is the time of the nth
renewal; see Feller (1971) for renewal theory and its applications. Typical questions arising in
the renewal-record context are:

(i) What is the probability that the component in use at time t is a record?

(ii) What is the length of the longest lifetime observed up to time t?

(iii) Regarding (Sn)n∈N as a random partition of the time interval R+, what is the amount of
time spent in records up to time t?

Scheffer (1995) has shown that in the context of (i) a nontrivial limit probability arises for heavy-
tailed lifetime distributions, Grübel (1994) obtained a result on the rank of the current lifetime
for the finite mean case. The special case of geometric lifetime distributions in (ii) was important
for the analysis of von Neumann addition in Grübel and Reimers (2001) (this algorithm is one of
the standard topics in computer science curricula and is explained in Scott (1985), for example).
For lifetime distributions with finite support and with t → ∞, (iii) leads to the total time spent
in records, the question considered here; for Poisson processes similar problems are currently
under investigation.

For our analysis of the record sums we will also need the number of max- and min-records,

Y+
d :=

∞∑
n=1

∏
m<n

1{Ud,n>Ud,m},

Y−
d :=

∞∑
n=1

∏
m<n

1{Ud,n<Ud,m}.

In our first result we obtain a distributional approximation for the Y -sequence with respect to
total variation distance. For distributions P,Q on some σ -field B this distance is defined by

dTV(P,Q) := sup
A∈B

|P(A) − Q(A)|;

we have
dTV(P,Q) = 1

2

∑
k∈Z

|P({k}) − Q({k})|

if P and Q are concentrated on the set Z of integers. We write L(Z) for the distribution of the
random variableZ and usedTV(X, Y ) as an abbreviation fordTV(L(X),L(Y )). Convergence in
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the total variation norm is stronger than convergence in distribution: obviously, dTV(Xn,X) →
0 implies that P(Xn ≤ x) → P(X ≤ x) for all x ∈ R as n → ∞.

Finally, let Po(λ) denote the Poisson distribution with parameter λ. For future use let unif(S)
be the discrete uniform distribution on the finite setS, unif(0, 1) denotes the uniform distribution
on the unit interval and N(0, 1) is the standard normal distribution.

Theorem 1. With λd := ∑d
k=2 1/k and L(Zd) = Po(λd) we have

dTV(Y±
d , 1 + Zd) ≤ π2 − 6

6 log d/2
for all d ≥ 2.

As a corollary we see that (Y±
d − log d)/(log d)1/2 is asymptotically standard normal,

i.e. converges in distribution to N(0, 1) as d → ∞. In the proof it is enough to consider
Y+
d only, as we obviously have L(Y+

d ) = L(Y−
d ), which is essentially a consequence of the

elementary fact that L(X) = unif({1, . . . , d}) implies that L(d + 1 − X) = unif({1, . . . , d}).
In our next theorem we obtain convergence in distribution for the normalized record sums

S−
d . The limit distribution is the perpetuity associated with unif(0, 1), by which we mean the

distribution of
∑∞

n=1
∏n

k=1 Uk with (Uk)k∈N a sequence of independent, unif(0, 1)-distributed
random variables. Perpetuities arise in an astounding variety of situations, see e.g. Goldie and
Grübel (1996) and the references given there.

Theorem 2. Let Z be a random variable whose distribution is the perpetuity associated with
unif(0, 1). Then

lim
d→∞ P

(
S−
d

d
≤ x

)
= P(Z ≤ x) for all x ∈ R.

Convergence in distribution of a properly rescaled version ofS+
d is now a simple consequence

of these theorems and the fact that the random vectors (Y+
d , S+

d ) and (Y−
d , (d + 1)Y−

d − S−
d )

have the same distribution.

Corollary 1. Let Z be a random variable with distribution N(0, 1). Then

lim
d→∞ P

(
S+
d − d log d

d
√

log d
≤ x

)
= P(Z ≤ x) for all x ∈ R.

It also follows from these results that S+
d /(dY+

d ) converges to 1 in probability, which is
remarkable (on first sight) as S+

d ≤ dY+
d : to a first approximation the max-records are all of

size d in the sense that the relative proportion of those less than (1 − ε)d tends to 0 for all
ε > 0. This can be made more precise: the distributional equality used for Corollary 1 implies
that dY+

d − S+
d has the same distribution as S−

d − Y−
d , hence the above theorems yield the

convergence in distribution of Y+
d − d−1S+

d . As Y+
d / log d converges to 1 in probability we

obtain that

lim
d→∞ P

(
1 − S+

d

dY+
d

>
ε

log d

)
= P(Z > ε)

for all ε > 0, with Z as in Theorem 2.
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2. Proofs

We use the background probability space

(�0,A0,P0) := ((0, 1),B(0,1), unif(0, 1))⊗N

together with the random variables

U0,n : �0 → (0, 1), ω = (ωm)m∈N �→ ωn for all n ∈ N;
these are independent and uniformly distributed on the unit interval. The corresponding
sequence of min-records is (U0,τn)n∈N, where (τn)n∈N is defined recursively by

τ1 ≡ 1, τn+1 := inf{m > τn : U0,m < U0,τn}.
Let δ(x) denote the unit mass in x. It is known that

∑∞
n=1 δ(U0,τn) is a Poisson random measure

on the interval (0, 1] with intensity ν,

ν((t, 1]) = −log t for 0 < t ≤ 1;
see e.g. Proposition 4.1(iii) in Resnick (1987) and note that we deal with min-records. Writing
�x� for the smallest integer greater than or equal to x we further put

Ud,n := �dU0,n� for all d, n ∈ N;
then, for all d ∈ N, (Ud,n)n∈N is a sequence of independent and unif({1, . . . , d})-distributed
random variables. A value k ∈ {2, . . . , d} appears as min-record in the sequence (Ud,n)n∈N if
and only if at least one of the values U0,τn falls into the interval ((k−1)/d, k/d]. The structural
result quoted above implies that the random number Vd,k of such hits has a Poisson distribution
with parameter

λd,k := ν

((
k − 1

d
,
k

d

])
= log

(
1 + 1

k − 1

)
, k = 2, . . . , d.

Also, Vd,2, . . . , Vd,d are independent. With Wd,k := 1N(Vd,k) we therefore have

Y−
d = 1 +

d∑
k=2

Wd,k,

where Wd,k has a Bernoulli distribution with parameter

pd,k := P0(Vd,k > 0) = 1 − exp(−λd,k) = 1

k

and Wd,2, . . . ,Wd,d are independent. (The same representation holds for the number of max-
records among the first d of any sequence of independent and identically distributed random
variables with continuous distribution function; see Arnold et al. (1998, p. 24)). This is the
classical situation for Poisson approximation: Barbour et al. (1992) give the general result

dTV

(
L

( d∑
k=2

Wd,k

)
,Po

( d∑
k=2

pd,k

))
≤ 1∑d

k=2 pd,k

d∑
k=2

p2
d,k.
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Applying this in the above context and using

d∑
k=2

pd,k =
d∑

k=2

1

k
≥ log d − log 2,

d∑
k=2

p2
d,k =

d∑
k=2

1

k2 ≤ π2

6
− 1,

we obtain the statement of Theorem 1.
To prove Theorem 2 we first identify the distribution of Z := ∑∞

n=1 U0,τn , the sum of all
min-records in the sequence (U0,n)n∈N. Applying the transformation t �→ −log t to the points
of the Poisson random measure introduced above, we obtain a Poisson process on [0,∞) with
constant intensity 1, which means that the position of the first point V1 := −logU0,τ1 and the
spacings

Vn := −logU0,τn + logU0,τn−1 , n > 1,

are independent and exponentially distributed with parameter 1. From

Z =
∞∑
n=1

exp

(
−

n∑
m=1

Vm

)
=

∞∑
n=1

n∏
m=1

Ũm,

with Ũm := exp(−Vm), we now obtain the desired representation as the variables Ũm, m ∈ N,
are independent and unif(0, 1)-distributed.

We next obtain a lower bound for S−
d /d within the above construction. Let N ∈ N be given.

For any d with
1

d
< min{U0,τn−1 − U0,τn : 1 < n ≤ N},

the values �dU0,τm�, m = 1, . . . , N , are all different so that S−
d /d ≥ ∑N

n=1 U0,τn . Letting first
d → ∞ and then N → ∞ in this inequality we obtain

lim inf
d→∞

1

d
S−
d ≥ Z almost surely.

For a corresponding upper bound we first note that the discretization resulting in S−
d /d adds at

most 1/d to each of the contributing U0,τn -values, hence

1

d
S−
d ≤ Z + 1

d
Y−
d .

From the proof of Theorem 1 we know that Y−
d − 1 = ∑d

k=2 Wd,k with Wd,2, . . . ,Wd,d

independent and P(Wd,k = 1) = 1 − P(Wd,k = 0) = 1/k. Using Markov’s inequality we
obtain

P

(
1

d
Y−
d > ε

)
≤ 1

εd
E Y−

d = 1

εd

d∑
k=1

1

k
.

This shows that Y−
d /d converges to 0 in probability as d → ∞, hence it follows from the upper

and lower bound that S−
d /d converges in distribution to Z.
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3. Comments and examples

An approach based on analytic methodology to the problems considered in this paper might
begin with deriving a recursion relation for the probabilities of interest. These lead to equations
for some associated generating functions and thereby open up the connection to a wealth of
analytic techniques. Recursion relations can also be used to compute the distributions of interest
for finite d. Suppose that we want to calculate the joint distribution of Y−

d and S−
d , i.e. the values

α(d, i, j) := P(Y−
d = i, S−

d = j).

We consider the following models,

(�d,Ad ,Pd) := ({1, . . . , d},P ({1, . . . , d}), unif({1, . . . , d}))⊗N,

Ud,n : �d → {1, . . . , d}, ω = (ωm)m∈N �→ ωn for all n ∈ N,

and construct a family of transformations Td : �d → �d−1 relating these probability spaces
by

(Td(ω))n := Ud,τn(ω)(ω), n ∈ N,

where the sequence (τn)n∈N0 is defined recursively by

τ0 ≡ 0, τn+1 := inf{m > τn : Ud,m < d}.
In words: Td(ω) is obtained from ω by deleting all d-values. In these definitions we follow the
convention that inf ∅ = ∞ and we put Ud,∞ ≡ 0. With respect to Pd and the other distributions
on �d that we introduce below, {τn = ∞} only happens on a null set and is therefore without
relevance for the probabilities α(d, i, j). It is easy to check that the image of Pd under Td is
Pd−1 and that the same image measure arises if we replace Pd by the conditional probability
measures Pd(· |Ud,1 < d) and Pd(· |Ud,1 = d).

The pair (Y−
d , S−

d ) can be regarded as a function on �d , with values in N×N. On {Ud,1 < d}
we obviously have (Y−

d , S−
d ) = (Y−

d−1, S
−
d−1) ◦ Td , and on {Ud,1 = d} we have (Y−

d , S−
d ) =

(Y−
d−1, S

−
d−1) ◦ Td + (1, d). Combining these considerations we arrive at

α(d, i, j) = Pd(Y
−
d = i, S−

d = j |Ud,1 < d)Pd(Ud,1 < d)

+ Pd(Y
−
d = i, S−

d = j |Ud,1 = d)Pd(Ud,1 = d)

=
(

1 − 1

d

)
α(d − 1, i, j) + 1

d
α(d − 1, i − 1, j − d),

a relation that the experienced coin-tosser accepts without the above formal ado. Together with
the obvious fact that (Y−

1 , S−
1 ) = (1, 1) this can now be used to calculate the joint probability

mass function (PMF) of Y−
d and S−

d and from

L((Y+
d , S+

d )) = L((Y−
d , (d + 1)Y−

d − S−
d ))

we then also get the joint PMF of Y+
d and S+

d . Table 1 gives the latter values for d = 6,
zero entries are left blank. We have E S+

6 = 8028/720 = 11.15 and P(S+
6 ≥ k) drops from

432/720 = 0.6 to 290/720 ≈ 0.4028 as k increases from 11 to 12. The last line contains the
(rounded) probabilities that are obtained from the shifted Poisson approximation in Theorem 1.

The approximation is apparently not very precise for d = 6. It might be worth noting in
this context that the results in Chapter 2 of Barbour et al. (1992) can be used to obtain a lower
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Table 1: Joint distribution of Y+
6 and S+

6 (all probabilities are multiplied by 720).

Y

S 1 2 3 4 5 6 PMF

6 120 120
7 24 24
8 30 30
9 40 6 46

10 60 8 68
11 120 22 142
12 39 2 41
13 50 3 53
14 40 10 50
15 60 13 73
16 22 1 23
17 15 2 17
18 20 3 23
19 4 4
20 5 5
21 1 1
PMF 120 274 225 85 15 1 720
Approx. 169 245 178 86 31 9 717

bound of the order (log d)−1(log log d)−2 for the total variation distance, hence the rate of
convergence is indeed very slow.

At present we do not see how to use the above recursion to derive limit results of the type
given in Section 1. However, it is possible to consider the distributions as a whole rather than the
individual probabilities and this indeed leads to an alternative approach. This has been carried
out in detail by Reimers (2000), based on the ideas of Rösler’s (1991) analysis of the Quicksort
algorithm. In this approach, a recursive relation for the distributions µd , d ∈ N, of interest is
first established. After a suitable rescaling the recursion can be regarded as a transformation
T on some complete metric space (M, ρ) of probability measures. It is then shown that the
limit distribution has to be a fixed point of T and that T is a contraction; Banach’s fixed point
theorem can then be applied. The details can be rather technical as the transformation may
depend on d; also, a tightness argument in order to establish the existence of a limit point for
the sequence of rescaled µds might be needed.

Reimers (2000) used this method for a proof of Theorem 2, with µd the distribution of
Wd := (S−

d − E S−
d )/d (this already incorporates the rescaling). The space M consists of

the probability measures on the real line with finite second and vanishing first moment, ρ is a
Wasserstein metric as in Rösler (1991). The starting point for obtaining a recursive relation is a
decomposition with respect to the first value in the underlying sequence of ‘dice throws’ which
shows that S−

d is equal in distribution to the sum Ud + S−
Ud−1, with L(Ud) = unif({1, . . . , d})

and Ud, S
−
1 , . . . , S−

d−1 independent. For the rescaled variables Wd this implies that

L(Wd) = L

(
Ud − 1

d
WUd−1 + Cd(Ud)

)
with Cd(k) := k + E S−

k−1 − E S−
d

d
.
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A separate argument shows that limd→∞ E S−
d /d = 1, which leads to Cd(Ud) ≈ 2U − 1 for d

large with L(U) = unif(0, 1). Hence, if Wd converges to some W∞ as d → ∞ in some sense
that implies convergence in distribution and convergence of the respective first moments, then
we would expect that

L(W∞) = L(UW∞ + C∞(U)) with C∞(x) := 2x − 1,

which means that L(W∞) is a fixed point of the transformation

T : M → M; µ �→ L(UX + 2U − 1)

with X,U independent, L(X) = µ and L(U) = unif(0, 1). This transformation is known to
be closely related to perpetuities; see Goldie and Grübel (1996).

In conclusion it seems that in the situation considered here the probabilistic approach, based
on the construction of a suitably rich background object, offers some advantages in terms of
the general understanding of the random mechanism; the authors had a similar experience in
connection with the analysis of von Neumann addition in Grübel and Reimers (2001). To give a
specific nonasymptotic example in the context of the present paper, consider the events Ak that
the value k arises in the max-record sequence, k = 1, . . . , d: from the constructions in Section 2
it is quite obvious that these events are independent. On the other hand the identification of
the limit distribution as the fixed point of some transformation can be very useful if numerical
approximations are required, the perpetuity appearing in our results providing a case in point.
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