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Abstract. For random trees T generated by the binary search tree algorithm
from uniformly distributed input we consider the subtree size profile, which
maps k ∈ N to the number of nodes in T that root a subtree of size k. Com-
plementing earlier work by Devroye, by Feng, Mahmoud and Panholzer, and
by Fuchs, we obtain results for the range of small k-values and the range of
k-values proportional to the size n of T . In both cases emphasis is on the
process view, i.e. the joint distributions for several k-values. We also show
that the dynamics of the tree sequence lead to a qualitative difference between
the asymptotic behaviour of the lower and the upper end of the profile.

1. Introduction

By a binary tree T we mean a finite, prefix-stable subset of the set N := {0, 1}⋆

of finite words with letters 0 and 1. The empty word represents the root node, and
a non-empty finite sequence u = (u1, . . . , uk) ∈ N identifies a node u of the tree
with its route, starting at the root node and moving to the left if ui = 0 and to the
right if ui = 1, i = 1, . . . , k (see also part (a) of Figure 1). A labeled binary tree is
a pair (T, φ), with T a binary tree and φ a function on T with values in some set;
in our case we may take this to be the set of real numbers. The binary search tree
(BST) algorithm transforms a sequence (xn)n∈N of pairwise distinct real numbers
into a sequence (Tn, φn)n∈N of labeled binary trees, where Tn has n nodes: We start
with the tree T1 = {∅} that consists of the root node only, with φ1(∅) = x1. In
order to obtain (Tn+1, φn+1) from (Tn, φn) we compare xn+1 to x1, moving to the
left if xn+1 < x1 and to the right if xn+1 > x1, repeating this with the next node
and its label (content) until an empty node for xn+1 is found.

Our basic object in this paper is the sequence (Tn)n∈N of random binary trees
that results if we apply the BST algorithm to a sequence (ξn)n∈N of independent
random variables that are all uniformly distributed on the unit interval. As the
trees depend on the order of the input values only, we may replace the uniform
distribution by any other distribution that assigns the value 0 to individual numbers
(has no atoms). We write BST(n) for the distribution of Tn; it is well known that
this is not the uniform distribution on the set of binary trees with n nodes.

Binary trees and the BST algorithm are standard objects of Discrete Mathemat-
ics and Theoretical Computer Science. Many authors have considered the above
random input model; see e.g. [SF96], [Ma92] and the references given there. For
example, the node depth profile of Tn, which maps k ∈ N to the number of nodes
u ∈ Tn with depth k (where in the above representation the depth of a node
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u = (u1, . . . , uk) is the word length k) has been investigated in [CDJ01], [FHN06],
[DJN08], and elsewhere.

In the present paper we consider the subtree size profile, which maps k ∈ N to
the number Xn,k of nodes u ∈ Tn that are the root of a subtree of Tn with size
k. Here the subtree T (u) of T associated with u = (u1, . . . , uk) ∈ T consists of
all v = (v1, . . . , vl) ∈ {0, 1}⋆ with the property that (u1, . . . , uk, v1, . . . , vl) ∈ T .
Figure 1 shows a tree with 15 nodes; two of the nodes, (0) and (1, 0, 1), root a
subtree of size 5, so that X15,5 = 2. Whereas the node depth profile is based on
the number of ancestors of a node, the subtree size profile considers the number of
its offspring. The first results we are aware of for the subtree size counts of random
binary trees generated by the BST algorithm from uniformly distributed random
permutations are due to Devroye [De91], who used a central limit theorem for m-
dependent random variables to prove asymptotic normality for the standardized
counts (Xn,k − EXn,k)/

√

var(Xn,k) for fixed k as n → ∞. Very recently Feng,
Mahmoud and Panholzer [FMP08] have obtained results for the case that k = kn

varies with n, proving that asymptotic normality holds whenever kn/
√
n → 0 as

n → ∞. These authors also showed that the limit distribution of Xn,kn
is Poisson

with mean 2/t2 if kn/
√
n → t for some t > 0. Shortly thereafter, Fuchs [Fu08]

obtained a Berry-Esseen bound in connection with asymptotic normality, and a
Poisson approximation result under the sole condition that kn → ∞. Whereas De-
vroye’s approach is basically probabilistic, the later authors heavily rely on analytic
machinery.

In the present paper we complement these earlier results by considering the sto-
chastic processes Xn = (Xn,k)k∈N as n → ∞, which implies that we obtain results
on the dependencies of the subtree size counts for various k-values. Part (b) of
Figure 1 shows a realization of the process X15. We will deal with the ‘lower’ end,
where k remains bounded, and the ‘upper’ end, where k = kn varies with n such
that kn/n tends to a positive value. For the lower end our main tool is the con-
traction method, which has become one of the standard techniques in this area. In
connection with node depth profiles this method has already been used in [FHN06]
and [DJN08]. It turns out that a variant of the method introduced in [NR04] leads
to convergence of the standardized processes n−1/2(Xn,k −EXn,k)k∈N to a discrete
time Gaussian process (X∞,k)k∈N as n → ∞, where convergence refers to weak
convergence of the finite-dimensional distributions of the processes. We obtain an
explicit description of the limiting second order structure. We also show that there
is a genuine reason for the fact that the result is on weak convergence only.

At the upper end, where k = kn varies with n such that limn→∞ kn/n = 1 − t,
0 ≤ t < 1, it is known that the individual random variables Xn,kn

converge to 0 in
probability. We show that a non-trivial limit arises if we pass to the partial sums

(1) Yn,t :=
∑

j≥(1−t)n

Xn,j,

and we then obtain a limit process Y∞ = (Y∞,t)0≤t<1 for the processes Yn =
(Yn,t)0≤t<1 as n → ∞. Part (c) of Figure 1 shows a path of Y15, the two nodes
with subtree size 5 correspond to a jump of size 2 at t = 2/3. Convergence refers to
the usual Skorohod metric on the space of cadlag functions on the interval [0, t0],
for all t0 < 1. It turns out that at this end of the subtree size profile we even have
convergence almost surely. Previous work has concentrated on the distributions
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Figure 1. Binary tree (a) with associated subtree size profile (b)
and cumulative big subtree counts (c)

— taking into account the dynamics of the sequence we see that there is a major
qualitative difference between the asymptotics of the two ends.

The results are given in the next section, proofs are in Section 3. In a final
section we collect some remarks on related results and problems. We write 1A for
the indicator function associated with a set A and L(X) for the distribution of a
random quantity X , sometimes abbreviating L(X) = P to X ∼ P . Also, ‘=distr’
means equality in distribution and ‘→distr’ denotes convergence in distribution.
Billingsley’s classic [Bi68] is our basic reference for convergence in distribution.

2. Results

Clearly, Xn,n ≡ 1 and Xn,k ≡ 0 if k > n. General formulas for the mean and
variance of Xn,k have already been obtained by [FMP08, p.178],

EXn,k =
2(n+ 1)

(k + 1)(k + 2)
for n ≥ k + 1,(2)

var(Xn,k) =
2k(4k2 + 5k − 3)(n+ 1)

(k + 1)(k + 2)2(2k + 1)(2k + 3)
for n ≥ 2k + 2.(3)

As explained in the introduction, our main interest here is in the ‘process view’,
which means that we need a similar result for the covariances.
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Proposition 1. (a) For 1 ≤ j < k,

cov(Xj+k+2,j , Xj+k+2,k) = − 4j(j + 2k + 3)

(j + k + 1)(j + k + 2)(k + 1)(k + 2)
.

(b) For all n > j + k + 2,

cov(Xn,j, Xn,k) =
n+ 1

j + k + 3
cov(Xj+k+2,j , Xj+k+2,k).

Our first theorem deals with the number of small subtrees.

Theorem 2. Let (X∞,k)k∈N be a centred Gaussian process with covariance matrix

Σ = (Σ(j, k))j,k∈N given by

(4) Σ(j, k) =



















2k(4k2 + 5k − 3)

(k + 1)(k + 2)2(2k + 1)(2k + 3)
, if j = k,

− 4j(j + 2k + 3)

(j + k + 1)(j + k + 2)(j + k + 3)(k + 1)(k + 2)
, if j < k.

Then (n−1/2(Xn,k − EXn,k))k∈N converges to (X∞,k)k∈N as n → ∞ in the sense

that, for any fixed k ∈ N, the k-dimensional random vectors

(5) n−1/2(Xn,1 − EXn,1, . . . , Xn,k − EXn,k)

converge in distribution to the k-dimensional random vector (X∞,1, . . . , X∞,k) as

n→ ∞.

In [De91], [FMP08] and [Fu08] limit results were obtained for the one-dimensional
random variables Xn,k, where k may depend on n. Our result complements this as
the vector version also provides information about the dependencies of the random
variables. We could view this as a partial answer to the question of what happens
‘across k’. Our second main point in the present paper is the discussion of what
happens ‘across n’: Taking the dynamics of the whole sequence (Xn)n∈N into ac-
count it is natural to ask for the ‘best’ mode of convergence. It turns out that
we have almost sure convergence at the big subtrees end of the profile, but that
the weak convergence result in Theorem 2 cannot be strengthened. Rather than
investigating this latter problem in some general abstract context of tail σ-fields
we give the following result on the number Xn,1 of ‘leaf nodes’, which may be of
interest in its own right.

Theorem 3. P (X3m−1,1 = m for infinitely many m ∈ N) = 1.

Theorem 3 and formula (2) together imply that

(6) lim inf
n→∞

|Xn,1 − EXn,1| = 0 with probability 1,

whereas Theorem 2 gives

(7) n−1/2(Xn,1 − EXn,1) →distr X∞,1,

where X∞,1 has a normal distribution with mean 0 and variance 2/45. Clearly, (6)
and (7) together imply that we do not have almost sure convergence for the random
vectors in (5).

For the big subtrees we need to set up a suitable state space for the Y -processes
first. Let D be the set of all cadlag (i.e., right continuous with left limits) functions
f : [0, 1) → R. We say that fn → f in D if the restrictions to every interval [0, t0],



THE SUBTREE SIZE PROFILE 5

t0 < 1, converge with respect to the Skorohod topology, see [Bi68, Chapter 3].
This defines a topology on D, we equip D with the associated Borel σ-field. Then
t 7→ Yn,t with Yn,t as defined in (1) is an element of this space, for every n, with
Yn,0 ≡ 1 and Yn,1− ≡ n.

Theorem 4. In the space D, Yn = (Yn,t)0≤t<1 converges almost surely to a limit

process Y∞ = (Y∞,t)0≤t<1 as n→ ∞.

In the course of the proof we will give a relatively explicit construction of Y∞,
based on the recursive structure of the family BST(n), n ∈ N. This construction
can also be used to obtain the mean and variance function of the limit process.

Theorem 5.

EY∞,t =
1 + t

1 − t
for all t ∈ [0, 1),

var(Y∞,t) =















2 +
2

1 − t
− 4

(1 − t)2
− 8 log(1 − t)

1 − t
, for t ∈ [0, 1/2),

8 log 2 − 5

1 − t
, for t ∈ [1/2, 1).

Note that t 7→ var(Y∞,t) is continuous but not differentiable at t = 1/2. Theo-
rem 5 also shows that the limit in Theorem 4 is non-degenerate.

3. Proofs

3.1. Proof of Proposition 1. Suppose that 1 ≤ j < k < ∞. We begin with the
case n = j+k+1. Then nodes contributing to Xn,j or Xn,k must be elements of the
left or right subtree of Tn. The size In of the left subtree is uniformly distributed
on {0, . . . , n − 1} and, given In = i, the left and right subtrees are independent,
with distributions BST(i) and BST(n− 1 − i) respectively. In particular, we have
the symmetry property

(8) E[Xn,jXn,k|In = i] = E[Xn,jXn,k|In = n− 1 − i] for i = 0, . . . , n− 1.

We now consider different ranges for the size of the left subtree separately.
If In = j then the left subtree contributes the fixed value 1 to Xn,j and all other

subtrees of size j must be contained in the right subtree; also, Xn,k ≡ 1 as the right
subtree is the only subtree with k nodes. This gives

E[Xn,jXn,k|In = j] = E[Xn,jXn,k|In = k] = 1 +EXk,j .

If In ∈ {j + 1, . . . , k − 1} then Xn,k = 0 as neither subtree has enough nodes to
accommodate a subtree of size k. Hence E[Xn,jXn,k|In = i] = 0 for this range of
i-values. If In = i ∈ {0, . . . , j − 1} then each subtree of size j must be a subtree of
one possible subtree of size k of the right subtree with n− 1 − i nodes, so that

E[Xn,jXn,k|In = i] = E[Xn,jXn,k|In = n− 1 − i] = EXn−1−i,k EXk,j .

Here we have used the simple fact that, for any two subtrees of a tree, either one of
them is contained in the other, or they are disjoint; also, given that a node spawns
a subtree of size k the distribution of this subtree is BST(k). Using the known
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formula for EXn,k we obtain

EXn,jXn,k =
2

n

(

1 +
2(k + 1)

(j + 1)(j + 2)

)

+
2

n

j−1
∑

i=0

2(n− 1 − i+ 1)

(k + 1)(k + 2)

2(k + 1)

(j + 1)(j + 2)

=
2j2k + 8j2 + 14jk + 24j + 16k + 16 + 4k2

(j + k + 1)(j + 1)(j + 2)(k + 2)
for n = j + k + 1.

We now turn to the case of interest, where n = j+ k+ 2. Again, we have Xn,k = 0
if In ∈ {j + 2, . . . , k − 1} so that

EXn,jXn,k =
2

n
E[Xn,jXn,k|In = 0] +

2

n

j−1
∑

i=1

E[Xn,jXn,k|In = i]

+
2

n
E[Xn,jXn,k|In = j] +

1

n

(

2 − 1{j+1=k}

)

E[Xn,jXn,k|In = j + 1].

(9)

Here we used (8), the indicator function ensures that we do not count In = k twice
if j and k differ by 1 only.

For the first term on the right hand side of (9) we use

E[Xn,jXn,k|In = 0] = EXj+k+1,jXj+k+1,k,

which now can be evaluated with the formula for the case n = j + k + 1 from the
first part of the proof. For i ∈ {1, . . . , j − 1} we get

E[Xn,jXn,k|In = i] = EXn−1−i,k EXk,j =
2(n− i)

(k + 1)(k + 2)

2(k + 1)

(j + 1)(j + 2)
.

Further

E[Xn,jXn,k|In = j] = (1 +EXk,j)EXk+1,k

=

(

1 +
2(k + 1)

(j + 1)(j + 2)

)

2(k + 2)

(k + 1)(k + 2)
,

and, if j + 1 < k,

E[Xn,jXn,k|In = j + 1] = EXj+1,j + EXk,j

=
2(j + 2)

(j + 1)(j + 2)
+

2(k + 1)

(j + 1)(j + 2)
,

whereas, for j + 1 = k,

E[Xn,jXn,k|In = j + 1] = 2
(

EXj+1,j + EXk,j

)

in view of Xn,k = 2 on In = j + 1. Note that this difference between the two cases
j + 1 < k and j + 1 = k cancels with the modification 2 − 1{j+1=k} in (9). Put
together this leads to

EXn,jXn,k =
4g(j, k)

(j + k + 2)(j + k + 1)(j + 1)(j + 2)(k + 1)(k + 2)

with

g(j, k) :=18 + 21j2k + 54jk + 33j + 39k + 18j2 + 29k2

+ 6j2k2 + 27jk2 + 9k3 + 3j3 + 2j3k + 4jk3 + k4,
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so that finally

cov(Xj+k+2,j , Xj+k+2,k) = EXj+k+2,jXj+k+2,k − EXj+k+2,j EXj+k+2,k

= − 4j(j + 2k + 3)

(j + k + 2)(j + k + 1)(k + 1)(k + 2)
.

For the proof of (b) we may regard j and k as being fixed. It is evidently enough
to show that, for all n ≥ j + k + 2,

(n+ 1)an+1 − (n+ 2)an = 0, with an := cov(Xn,j , Xn,k).

For any two random variables X and Y with finite second moment and a third
random variable Z we have the conditional covariance formula,

cov(X,Y ) = E
(

cov[X,Y |Z]
)

+ cov
(

E[X |Z], E[Y |Z]
)

.

Together with the basic distributional split property of BST(n) this readily leads
to the following recursion,

an =
2

n

n−1
∑

i=0

ai + bn, with bn := cov
(

E[Xn,j |In], E[Xn,k|In]
)

.

The recursion can easily be solved, resulting in

(n+ 1)an+1 − (n+ 2)an = (n+ 1)bn+1 − nbn,

so that it remains to show that the right hand side vanishes for n ≥ j + k + 2.
Again, nodes contributing to Xn,j or Xn,k must be elements of the right or left

subtree, so that

(10) E[Xn,j |In = i] = EXi,j + EXn−1−i,j ,

and similarly with k instead of j. We now simply calculate nbn for n ≥ j + k + 2.
Using (10) we obtain

(11) nbn =

n−1
∑

i=0

(EXi,j + EXn−1−i,j)(EXi,k + EXn−1−i,k) − nEXn,jEXn,k.

With (2) and EXi,j = 0 for i < j, EXj,j = 1, and n ≥ j + k + 2, this leads to

(j + 1)(j + 2)(k + 1)(k + 2)nbn

= 4(k + 1)2(k + 2) + 8

n−1
∑

i=k+1

(i+ 1)2 + 4(n− j)(j + 1)(j + 2)

+ 4(n− k)(k + 1)(k + 2) + 8
n−2−k
∑

i=j+1

(i+ 1)(n− i) − 4n(n+ 1)2

= −1

3
j (8 + 4j + 4j2),

which indeed does not depend on n. (Some of the above computations were carried
out with the help of the computer algebra system Maple.)
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3.2. Proof of Theorem 2. We require some more notation. Throughout, we fix
the dimension k and regard vectors as column vectors or k × 1 matrices, At is
the transpose of the matrix A, and we write δi,j for Kronecker’s delta, which is 1
for i = j and 0 otherwise. We use the Euclidean norm on R

k and the operator
norm on the space R

k×k of k× k-matrices, writing ‖ · ‖ in both cases. Convergence
of random vectors and random matrices refers to the respective L3-norm. For
example, Yn → 0 for a sequence (Yn)n∈N of k-dimensional random vectors means
that limn→∞E‖Yn‖3 = 0. Finally, Id = (δi,j)

k
i,j=1 denotes the k × k unit matrix.

Let Yn := (Xn,1, . . . , Xn,k)t, an := EYn and Σn := cov(Yn). Below we show

that Σ
−1/2
n (Yn − an) converges in distribution to a d-dimensional standard normal

random vector. As k was arbitrary, this together with the structure of the Σn’s
given in Proposition 1 implies the statement of the theorem.

Splitting the tree into its left and right subtree as in Subsection 3.1 we obtain
the following basic distributional recursion for the Y -vectors,

(12) Yn =distr YIn
+ Y ′

n−1−In
+ bn.

Here Y ′
k is an independent copy of Yk for each k ∈ N, In is independent of (Yn)n∈N

and (Y ′
n)n∈N and is uniformly distributed on {0, . . . , n−1}, and bn = (δn,1, . . . , δn,k).

As this does not change the distributions we may assume that In = ⌊nU⌋ for all
n ∈ N, with U uniformly distributed on the unit interval.

For n > k the ‘toll terms’ bn in (12) disappear, and then for the rescaled random
vectors

Zn := Σ−1/2
n (Yn − an), Z ′

n := Σ−1/2
n (Y ′

n − an), n ∈ N,

the recursion (12) translates into

(13) Zn =distr An,In
ZIn

+ An,n−1−In
Z ′

n−1−In
+ vn,In

with

An,i := Σ−1/2
n Σ

1/2
i , vn,i := Σ−1/2

n (ai + an−1−i − an) for i = 0, . . . , n− 1.

We need the asymptotic behaviour of the random vectors vn,In
and the random

matrices An,In
, An,n−1−In

.

Lemma 6. (a) For all j ∈ N,

lim
n→∞

E1{In≤j}‖An,In
‖3 = 0, lim

n→∞
E1{n−1−In≤j}‖An,n−1−In

‖3 = 0.

(b)
lim

n→∞
E‖vn,In

‖3 = 0.

(c)

lim
n→∞

E‖An,In
−
√
U Id‖3 = 0, lim

n→∞
E‖An,n−1−In

−
√

1 − U Id‖3 = 0.

Proof. Throughout we may assume that n > 2k + 2. In particular, by part (b) of
Proposition 1,

(14) Σn = (n+ 1)Λ

with some fixed matrix Λ.
(a) By symmetry it is enough to prove the first part, and for this it is enough to

use (14) and to note that

sup
i=0,...,j

‖Σi‖ < ∞ for all j ∈ N.
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(b) From (2) we obtain that ai + an−1−i = an for i = k + 1, . . . , n − 2 − k, so
that

(15) E‖vn,In
‖31{k<In<n−1−k} = 0.

For i ≤ k we have for the jth component of ai + an−1−i − an

∣

∣(ai + an−1−i − an)j

∣

∣ ≤
∣

∣

∣
δij −

2(i+ 1)

j + 1

∣

∣

∣
≤ k + 1,

so that

E‖aIn
+ an−1−In

− an‖31{In≤k} ≤ (k + 1)9/2 k + 1

n
,

which together with (14) implies

(16) lim
n→∞

E‖vn,In
‖31{In≤k} = 0.

By symmetry,

(17) lim
n→∞

E‖vn,In
‖31{In≥n−k−1} = 0,

and part (b) of the lemma is now immediate from (15), (16) and (17).
(c) Again it is enough to prove the first part, and it is easy to see that we may

neglect the range In ∈ {0, . . . , 2k+2, n−2k−3, . . . , n−1} asymptotically. Outside
this range (14) gives An,In

= (
√
In + 1/

√
n+ 1)Id, so the assertion follows from

the construction of the sequence (In)n∈N. �

Letting n→ ∞ in (13) we formally obtain the fixed point equation

(18) Z∞ =distr

√
U Z∞ +

√
1 − U Z ′

∞

for the prospective limit Z∞. In view of

(19) E
(

‖
√
U Id‖3 + ‖

√
1 − U Id‖3

)

=
4

5
< 1

the right hand side of (18) defines a contraction with respect to the Zolotarev ζ3-
metric on the space of k-dimensional distributions with mean 0 and variance Id,
and it is easily seen that the k-dimensional standard normal distribution solves (18)
and hence is the unique fixed point in this space.

This is made rigorous in [NR04]. The statements in the above lemma together
with (19) validate the assumptions of Theorem 4.1 in [NR04], which provides the
desired convergence to the fixed point, i.e. asymptotic normality. We mention in
passing that we only need a special case; with the notation used in [NR04] we have
that s = 3, we only have two summands, and our In has a very special form.

3.3. Proof of Theorem 3. A tree Tn with n nodes has n + 1 nodes u that are
external in the sense that Tn+1 := Tn ∪ {u} is a tree with n + 1 nodes. Any node
with maximal depth must be a leaf node, and any leaf node is ancestor to two
external nodes. This leads to the (tight) bounds

(20) Xn,1 ≥ 1, 2Xn,1 ≤ n+ 1 for all n ∈ N.

In the BST sequence, Tn+1 arises from Tn by choosing u uniformly at random
from the external nodes of Tn. The new node may either increase Xn,1 by 1 or
it may leave Xn,1 invariant; if Xn,1 = k these two possibilities have probabilities
(n+ 1 − 2k)/(n+ 1) and 2k/(n+ 1) respectively.
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Let Y = (Ym)m∈N be defined by Ym := X3m−1,1 −m for all m ∈ N. This is a
non-homogeneous Markov chain with Y1 ≡ 0, and some standard calculations show
that its transition probabilities are given by

P (Ym+1 = k − 1|Ym = k) =
8(m+ k)3

3m(3m+ 1)(3m+ 2)
,

P (Ym+1 = k + 1|Ym = k) =
2(m+ k)(m+ 1 − 2k)(m− 2k)

3m(3m+ 1)(3m+ 2)

+
2(m− 2k)2(m+ k + 1)

3m(3m+ 1)(3m+ 2)

+
2(m− 2k)(m− 2k − 1)(m+ k + 2)

3m(3m+ 1)(3m+ 2)
,

P (Ym+1 = k + 2|Ym = k) =
(m− 2k)(m− 2k − 1)(m− 2k − 2)

3m(3m+ 1)(3m+ 2)
,

and P (Ym+1 ∈ {k−1, k, k+1, k+2} | Ym = k) = 1. Note that the restrictions (20)
translate into

k ≥ 1 −m, 2k ≤ m.

Now let Z = (Zm)m∈N be a random walk on Z with P (Z1 = 0) = 1 that moves
from k to k−1, k+1 and k+2 with probabilities 8/27, 6/27 and 1/27 respectively,
and again P (Zm+1 ∈ {k − 1, k, k + 1, k + 2}|Zm = k) = 1 for all m ∈ N. It is
straightforward to show that, for k > 0,

P (Ym+1 = k − 1|Ym = k) ≥ P (Zm+1 = k − 1|Zm = k),

P (Ym+1 = k + 1|Ym = k) ≤ P (Zm+1 = k + 1|Zm = k),

P (Ym+1 = k + 2|Ym = k) ≤ P (Zm+1 = k + 2|Zm = k).

whereas for k < 0 all these inequalities hold with ≥ replaced by ≤ and vice versa.
In words: On N, the conditional increment of Y is stochastically bounded from
above by the conditional increment of Z; on −N, it is the other way round. We
also have

P (Y2 = −1) ≤ P (Z2 = −1), P (Y2 ≥ 1) = P (Y2 = 1) ≤ P (Z2 ≥ 1).

Given a sequence (ξn)n∈N of independent random variables, all uniformly dis-
tributed on the unit interval, we can construct Y and Z via Y1 = Z1 ≡ 0 and

Zm+1 = Zm + f(ξm), Ym+1 = Ym + g(m,Ym, ξm) for all m ∈ N,

where f and g(m, k, ·) are the quantile functions associated with the distributions
of the conditional increments. This construction yields a bivariate chain on Z × Z

that has marginals Y and Z and is such that, for all m ∈ N,

0 < Ym ≤ Zm =⇒ 0 ≤ Ym+1 ≤ Zm+1,

Zm ≤ Ym < 0 =⇒ Zm+1 ≤ Ym+1 ≤ 0

and with the further property that Y2Z2 ≥ 0. This means that the return time
distributions to 0 of Y are stochastically bounded from above by the distribution of
the return time to 0 of Z. Note that for Y the return times to 0 are independent but
not identically distributed—we do have a Markov chain, but it is not homogeneous
in time. The random walk (Zm)m∈N is null recurrent in view of the fact that
its step distribution has mean 0, which means that its return time is finite with
probability 1. Hence Y returns to 0 infinitely often.
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3.4. Proof of Theorem 4. The subtree size profile can be regarded as an inverse
to the standardized subtree size counts. We show that the counts converge, and
that the Y -processes can be written as an almost surely continuous function of
these counts. In order to make this precise we define the empirical subtree size
functional Ψ as a function that associates with a non-empty tree T the function
Ψ(T ) : N → [0, 1] defined by

Ψ(T )(u) := #T (u)/#T, u ∈ N.

Now let (ηu)u∈N be a family of independent random variables, all uniformly dis-
tributed on the unit interval. For each u = (u1, . . . , uk) ∈ N let

(21) Φ∞(u) :=

k−1
∏

j=1

η
(1−uj+1)

(u1,...,uj)
· (1 − η(u1,...,uj)

)uj+1 .

We interpret an empty product as 1, i.e. Φ∞(∅) = 1. This defines a random element
of [0, 1]N . The following proposition seems to belong to the folklore of the subject,
but we have not been able to find it in the literature in the form required here. The
result can be put into the wider context of boundary theory for transient Markov
chains; see [EGW09].

Proposition 7. As n→ ∞, Ψ(Tn) converges with probability 1 in the space [0, 1]N ,

endowed with the product topology. The distribution of the limit Ψ∞ is the same as

the distribution of Φ∞.

Proof. Let u = (u1, . . . , ul) ∈ N . We may assume that u 6= ∅. It is known that the
fill level of the Tn’s converges to ∞ almost surely, so that

τ := min{n ∈ N : u ∈ Tn} < ∞ with probability 1.

Let (ξn)n∈N be the input sequence that generates the sequence of trees as explained
in the introduction. The order statistics 0 < ξ(τ :1) < ξ(τ :2) < · · · < ξ(τ :τ) < 1
associated with ξ1, . . . , ξτ form a partition of the unit interval. Let k be such
that ξτ = ξ(τ :k) and put ξ(τ :0) = 0, ξ(τ :τ+1) = 1. The sequence (ξτ+n)n∈N is
independent of the initial segment (ξ1, . . . , ξτ ) and again consists of independent
random variables, all uniformly distributed on [0, 1]. The subsequence of those that
land in the interval I := (ξ(τ :k−1), ξ(τ :k+1)) and thus contribute to the subtree rooted
at u is again i.i.d., now uniformly distributed on I, conditionally on (ξ1, . . . , ξτ ),
which means that in the limit the relative subtree sizes at u0 := (u1, . . . , ul, 0) and
u1 := (u1, . . . , ul, 1) will be (ξ(τ :k) − ξ(τ :k−1))/(ξ(τ :k+1) − ξ(τ :k−1)) and (ξ(τ :k+1) −
ξ(τ :k))/(ξ(τ :k+1) − ξ(τ :k−1)) respectively. Hence, if we have convergence of Ψ(Tn)(u)
then convergence also holds for Ψ(Tn)(u0) and Ψ(Tn)(u1). In view of Ψ(Tn)(∅) ≡ 1
for all n ∈ N this proves almost sure convergence of the standardized subtree size
functional in the product topology.

The distributional statement now follows immediately from the basic distribu-
tional recursion of the family BST(n), n ∈ N0. �

We need two properties of the limit function.

Lemma 8. (a) With probability 1, all values Ψ∞(u), u ∈ N , are different.

(b) With probability 1, #{u ∈ N : Ψ∞(u) ≥ t} is finite for all t > 0.

Proof. In view of Proposition 7 we may consider Φ∞ defined in (21) instead of Ψ∞.
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For the proof of the first statement let u, v ∈ N with u 6= v and let s be the last
common ancestor of u and v. We first assume that s /∈ {u, v}. If s is the direct
ancestor to u and v, i.e. u = s0, v = s1 or u = s1, v = s0, then

(22) Φ∞(u) = ηΦ∞(s), Φ∞(v) = (1 − η)Φ∞(s),

with η uniformly distributed on (0, 1) and independent of Φ∞(s). Clearly, this
implies that P (Φ∞(u) = Φ∞(v)) = 0. If u /∈ {s, s0, s1} then a representation
analogous to (22) would contain an additional factor η̃ for Φ∞(u), where η̃ has
an absolutely continuous distribution and is independent of η and Φ(s). Again,
this implies that P (Φ∞(u) = Φ∞(v)) = 0. By symmetry the same holds if v /∈
{s, s0, s1}, and the remaining cases s = u and s = v can be handled similarly.

For the proof of (b) we first note that the probability that Φ∞(u) ≥ t for a
specific node u = (u1, . . . , uk), k ∈ N, can be written as the probability of the event
η1 · · · ηk ≥ t, with η1, . . . , ηk independent and uniformly distributed on [0, 1]. By
a standard argument, using the fact that the variables − log ηi, i = 1, . . . , k, are
exponentially distributed with mean 1,

P (η1 · · · ηk ≥ t) = P
(

s(log η1 + · · · + log ηk) ≥ s log t
)

≤ e−s log t
(

Ees log η1

)k

≤ 1

ts(1 + s)k
for all s > 0.

We have 2k nodes of depth k. Hence, with s = 3/2,

E#{u ∈ N : Φ∞(u) ≥ t} = 1 +

∞
∑

k=1

E#{u ∈ N : |u| = k, Φ∞(u) ≥ t}

≤ 1 +

∞
∑

k=1

2k 2k

t3/25k
< ∞.

This proves that #{u ∈ N : Φ∞(u) ≥ t} is finite with probability 1 for each
individual t > 0. Using monotonicity in t it is easy to construct a set of probability 1
that works for all t > 0 simultaneously. �

Suppose now that A is such that P (A) = 1 and such that Ψ∞(ω) has the
properties described in Lemma 8 whenever ω ∈ A. Because of Proposition 7 we
may further assume that on A we also have Ψ(Tn)(u)(ω) → Ψ∞(u)(ω) for all
u ∈ N as n→ ∞. We now claim that, for ω ∈ A, Yn(ω) converges in D to the limit
Y∞(ω) = (Y∞,t(ω))0≤t<1 given by

Y∞,t(ω) := #
{

u ∈ N : Ψ∞(u)(ω) ≥ 1 − t
}

.

With Y∞ ≡ 0 on Ac this would show that Yn → Y∞ with probability 1.
Let ω ∈ A be fixed; below, we omit the argument ω. Let t0 < 1 be given and

choose ǫ > 0 such that 1− 2ǫ > t0. Then the number of nodes u with Ψ∞(u) ≥ ǫ is
finite, and these nodes u1, . . . , uk may be ordered such that Ψ∞(ui+1) < Ψ∞(ui),
i = 1, . . . , k − 1. Further, for each of these nodes, Ψ(Tn)(ui) → Ψ∞(ui).

Consider now the functions

fn : [0, t0] → N, t 7→ #{u ∈ N : Ψ(Tn)(u) ≥ 1 − t},
n ∈ N, and

f∞ : [0, t0] → N, t 7→ #{u ∈ N : Ψ∞(u) ≥ 1 − t}.
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Clearly, these are the restrictions of the Yn- and Y∞-path respectively to the interval
[0, t0]. For any given δ > 0 we can find an n0 ∈ N such that |Ψ(Tn)(ui)−Ψ∞(ui)| ≤ δ
for all n ≥ n0 and all i ∈ {1, . . . , k}. We may further assume, by increasing n0 if
necessary, that the number of nodes in Tn, n ≥ n0, that have subtree size at least
1− t0, does not exceed k. All these functions are then increasing, take their values
in {1, . . . , k}, have jumps of size 1 only (if δ is small enough) and the position of
the ith jump of fn converges to the position of the ith jump of f . Taken together
this implies that fn → f as n → ∞ with respect to the Skorohod topology on the
space of cadlag functions on [0, t0].

3.5. Proof of Theorem 5. Using the representation (21) we define ΦL
∞,Φ

R
∞ :

N → [0, 1] by

ΦL
∞(u) := Φ∞(0u), ΦR

∞(u) := Φ∞(1u),

where 0u = (0, u1, . . . , uk), 1u = (1, u1, . . . , uk) for all u = (u1, . . . , uk) ∈ N . Let

Y L
∞(t) := #{u ∈ N : ΦL

∞(u) ≥ 1 − t}, Y R
∞(t) := #{u ∈ N : ΦR

∞(u) ≥ 1 − t}.
Then we obtain from (21) with η := η∅

(23) Y∞,t =distr 1 + 1[1−t,1)(η)Y
L
∞

(η − 1 + t

η

)

+ 1(0,t](η)Y
R
∞

( t− η

1 − η

)

.

Clearly, EY L
∞(t) = EY R

∞(t) = EY∞,t, hence (23) implies that f(t) := EY∞,t satisfies
the integral equation

f(t) = 1 + 2

∫ t

0

f
( t− s

1 − s

)

ds.

This is uniquely solved by f(t) = (1 + t)/(1 − t), 0 ≤ t < 1. (We can use (2)
to guess the solution, but note that almost sure convergence in D does not imply
convergence of the first moments.)

In the above derivation of the mean function we have implicitly used that EYn,t <
∞ for 0 ≤ t < 1, which follows from the argument given at the end of the proof of
Lemma 8. This argument can easily be extended to prove the existence of higher
moments; in particular, EY 2

∞,t <∞ for 0 ≤ t < 1.
To obtain the variance function g(t) := var(Y∞,t) we once again make use of the

conditional variance formula,

g(t) = var
(

E[Y∞,t|η]
)

+ E
(

var[Y∞,t|η]
)

,

with η as in (23). From (23) we obtain, with f again the mean function,

E[Y∞,t|η] = 1 + 1[1−t,1)(η) f
(η − 1 + t

η

)

+ 1(0,t](η) f
( t− η

1 − η

)

.

Using our formula for f we are thus led to

var
(

E[Y∞,t|η]
)

= E
(

E[Y∞,t|η]
)2 − (EY∞,t)

2 = h(t)

with

h(t) :=















2t(t2 − 6t+ 3)

3(1 − t)2
, 0 ≤ t ≤ 1/2,

2(1 − t)

3
, 1/2 < t < 1.

Further, as Y L
∞ and Y R

∞ are independent given η,

var[Y∞,t|η] = 1[1−t,1)(η) g
(η − 1 + t

η

)

+ 1(0,t](η) g
( t− η

1 − η

)

,
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which leads to

E
(

var[Y∞,t|η]
)

= 2

∫ t

0

g
( t− s

1 − s

)

ds = 2(1 − t)

∫ t

0

1

(1 − s)2
g(s) ds.

Putting this together we obtain an integral equation for the variance function,

(24) g(t) = 2(1 − t)

∫ t

0

g(s)

(1 − s)2
ds + h(t).

In particular, g(0) = 0 (which is also obvious from Y∞,0 ≡ 1), g is continuous on
[0, 1), and g is differentiable on (0, 1/2) ∪ (1/2, 1). Standard techniques, such as
taking the derivative on both sides and solving the resulting differential equations
inside the subintervals, can be used to show that (24) is uniquely solved by the
function given in the theorem.

4. Comments

4.1. Contractions at the big end. We have used a variant of the contraction
method to obtain asymptotic normality for the number of small subtrees. By design,
a method that takes distributions as its basic objects will lead to weak convergence
only, where in fact, by Theorem 4, the ‘true’ mode of convergence for the cumu-
lative counts of large subtrees is convergence with probability 1. Nevertheless, it
is interesting to see the contraction method at work at this end too. We refer the
reader to the first author’s doctoral thesis [De09] for details and simply give an
overview.

Let D now be the set of all weakly increasing and right continuous functions
f : [0, 1) → N with the property that f(0) = 1 and

‖f‖ :=

∫ 1

0

(1 − t) |f(t)| dt < ∞.

This is a closed subset of the L1-space associated with the measure ν(dt) = (1−t) dt
on the unit interval. Let B(D) be the associated Borel σ-field. Then Yn converges
in distribution in the space D as n → ∞, and the limit distribution is the unique
fixed point of a suitably defined functional Φ : M → M, with M the set of all
probability measures P on (D,B(D)) that satisfy the condition

∫

‖f‖P (df) < ∞:
We define a family {φ(s, .) : 0 < s < 1} of functions φ(s, .) : D → D by

φ(s, f)(t) := 1 + 1[1−t,1)(s) · f
(s− 1 + t

s

)

+ 1(0,t](s) · f
( t− s

1 − s

)

and then let Φ(P ) be the distribution of φ(η,X), with η and X independent, η
uniformly distributed on the unit interval, and P the distribution of the D-valued
random variable X ; see also (23). In fact, Φ turns out to be a strong contraction
with respect to the metric

d(P,Q) := inf
{

E‖X − Y ‖ : X ∼ P, Y ∼ Y
}

on M, and we have the following upper bound for the distance between the distri-
bution of Yn and the distribution of the limit:

d
(

L(Yn),L(Y∞)
)

≤ 6(1 + logn)/n for all n ∈ N.
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4.2. The middle range. Given that we have found functional limits at the big
and the small end of the subtree size functional it is natural to ask what happens
‘in the middle’. We know from the results of [FMP08] and [Fu08] that, for any
individual t ∈ (0,∞), the counts Xn,kn

converge in distribution to a limit that is

Poisson with mean 2/t2 if kn ∼ tn1/2. It is easy to see that we cannot possibly
have convergence almost surely in this situation as this would mean that with
probability 1 the random variable Xn,kn

does not change its value from some n
onwards.

Regarding the joint distribution for more than one t-value we conjecture that the
associated counts are independent in the limit (Proposition 1 shows that the covari-
ances tend to 0), but we do not have a proof. Use of the contraction method seems
to require the construction of an appropriate accompanying sequence. Neininger
and Rüschendorf [NR04] were able to carry this out in situations where asymptotic
normality holds, as in our Theorem 2. For this it was important that for normal
distributions there are two parameters that can be adjusted; also, the ideal metric
ζ3 used in connection with asymptotic normality does not seem to have an obvious
analogue for distributions concentrated on N0. We plan to deal with this problem
in a separate paper.

4.3. Use of subtree sizes. Passing from a binary tree to one of its characteristics
entails some loss of information, but the intention is of course that the characteristic
distillates the features of the tree that are of relevance to the application of interest.
As with the node depth profile, the subtree size profile captures to some extent the
balancedness of tree. For example, the sequence (1, 1, . . . , 1) would not completely
specify the tree but it would show that each node has exactly one direct child—the
tree is essentially a linked list, and only the left-right structure of the tree’s only
path is lost when passing from the tree Tn to its subtree size profile Xn. Other
characteristics of Tn can be read off from Xn; for example, the internal path length
Pn, which is the sum of the heights of all nodes in Tn, and the Wiener index Wn,
which is the sum of all distances between unordered pairs of nodes in Tn, can be
written as

Pn =
n−1
∑

j=1

jXn,j , Wn =
n−1
∑

j=1

j(n− j)Xn,j .

Another use of subtree sizes appears in connection with the reconstruction of a
sample ξ1, . . . , ξn from the associated labeled binary tree (Tn, φn) produced by the
BST algorithm. Where within the range of knowing the full sample and knowing the
ordered sample lies (Tn, φn)? In the step from the order statistics to the original
sample all n! permutations are possible, and have equal likelihood. Given the
labeled tree it is clear that the first value ξ1 of the sample is the label of the root
node, but the permissible permutations associated with the left L(Tn) and right
subtree R(Tn) of Tn may be put together in an arbitrary manner. This implies that,
with ψ(Tn) the number of permutations that are compatible with the outcome Tn,
we have

ψ(Tn) =

(

#Tn − 1

#L(Tn)

)

ψ(L(Tn))ψ(R(Tn)).
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This can easily be solved, resulting in

ψ(Tn) =
∏

u∈Tn

(

#Tn(u) − 1

#L(Tn(u))

)

= n!
∏

u∈Tn

1

#Tn(u)
= n!

n−1
∏

j=1

j−Xn,j ,

which depends on the tree only via the associated subtree size profile. For example,
with n = 15, 768768 different permutations lead to the tree T15 in Figure 1(a).
Of course, as conditioning turns uniform distributions into uniform distributions,
this also follows from the known formula for the probability of a specific tree under
BST(n), see e.g. [SF96, Theorem 6.1].

References

[Bi68] Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.
[CDJ01] Chauvin, B., Drmota, M. and Jabbour-Hattab, J. (2001) The profile of binary search

trees. Ann. Appl. Probab. 11, 1042–1062.
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