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Abstract

We discuss two Monte Carlo algorithms for finding the global maximum of a simple
random walk with negative drift. This problem can be used to connect the analysis
of random input Monte Carlo algorithms with ideas and principles from mathematical
statistics.
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1. Introduction

Let Xi, i ∈ N, be a sequence of independent random variables on some probability space
(�,A,P), with

P(Xi = 1) = 1 − P(Xi = −1) = p

for all i ∈ N. The sequence (Sk)k∈N0 with S0 = 0 and Sk = ∑k
i=1Xi for all k ∈ N is a simple

random walk on the integers, with parameter p. Let

Mn := max
0≤k≤n Sk and M := sup

k∈N0

Sk

be the maximum of the initial segment of length n ∈ N0 and the global supremum, respectively.
The random walk is said to be symmetric if p = 1

2 and asymmetric or biased if p �= 1
2 ; we

will assume throughout that 0 < p < 1
2 . The strong law of large numbers then implies that

Sk → −∞ almost surely as k → ∞. In particular,M is then finite with probability 1 and there
is an N0-valued random variable τ such that

M(ω) = Sτ(ω)(ω) and Sk(ω) < M(ω) for k < τ(ω), (1)

for P-almost all ω ∈ �.
In this paper, we consider the problem of finding M for a given path k �→ Sk(ω). The

authors believe that this problem is interesting in its own right; it is related, via the comparison
of strings, to a practical problem from molecular biology. Furthermore, it can be used to connect
the probabilistic theory of algorithms to ideas and concepts from mathematical statistics such
as conditioning, randomization, and efficiency.
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In the symmetric case, Odlyzko (1995) considered the paths of some fixed length n as an
input model for an unknown environment, and investigated the number of Sk, 1 ≤ k ≤ n,
that have to be examined in order to determine Mn. In the worst case this number grows as
n/2 as n → ∞, but there is an algorithm that needs only about c0

√
n such probes on average.

Chassaing (1999) obtained a similar result for the biased case, in which about c1 log n values
turn out to be sufficient on average. Recently, Chassaing et al. (2003) obtained an associated
asymptotic optimality result in distribution; Odlyzko (1995) and Chassaing (1999) gave such
results for the asymptotic average case behaviour.

The main interest in the papers mentioned in the previous paragraph is in algorithms that
determine with certainty the maximum, Mn, of an initial segment of length n of the path. For
the global maximum, M , this is not possible and we have to content ourselves with a Monte
Carlo algorithm, i.e. a procedure that returns the correct value only with some probability 1−α.
The error margin, α, is greater than 0 but can be chosen to be arbitrarily small at the cost of an
increase in running time. Odlyzko (1995) also considered Monte Carlo algorithms for Mn in
the symmetric case; he showed that a further reduction from n1/2 to (log n)2 is possible if an
error of magnitude n−10 is accepted.

In the next section, we describe the two algorithms and compare them from a theoretical
point of view. Section 3 contains the main results, and the proofs are presented in Section 4.
In Section 5, we collect some comments on possible extensions of the results and variants of
the proofs. Some numerical aspects are discussed in an appendix.

2. The algorithms

We now describe the two algorithms that we will analyse and compare in the sequel. As we
regard p as known and α as given, a very simple Monte Carlo algorithm consists of examining
the first N1 values, where N1 is the (1 − α)th quantile of the distribution of τ , with τ as in (1),
i.e.

N1 ≡ N1(α, p) := inf{k ∈ N0 : P(τ ≤ k) ≥ 1 − α}.
We will refer to this as algorithm (A1) below. Algorithm (A1) returns MN1 as the prospective
global maximum.

For the second method, algorithm (A2), we step through the values of the random walk one
by one and keep track of the drop,

Zk := max{S0, . . . , Sk} − Sk, k = 0, 1, . . . , (2)

of the random walk below its current maximum. Let T ZC := inf{k ∈ N0 : Zk = C} be the
time of the first visit to C of the process Z. Suppose now that we stop at T ZC and return MTZC
as the likely global maximum. For any stopping time, T , with respect to the natural filtration
associated with (Sk)k∈N0 , the post-T process (ST+k − ST )k∈N0 is again a random walk with
parameter p. This method therefore gives the correct result with probability P(M ≤ C). It is
known that the global maximum,M , of a simple random walk with parameterp has a geometric
distribution with parameter 1 − p/q, where q := 1 − p, i.e.

P(M = k) =
(
p

q

)k(
1 − p

q

)
for all k ∈ N0

(see also the proof of Theorem 1). Hence, if we choose

C ≡ C(α, p) :=
⌈

logα

log(p/q)

⌉
− 1, (3)
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then we arrive at an algorithm with error probability not exceeding α. (We write �x� for the
greatest integer less than or equal to x and x� for the least integer greater than or equal to x.)
This takes a random number, N2 ≡ N2(α, p) = T ZC(α,p), of steps.

According to Korf et al. (2003), algorithm (A2) was used in an early version of BLAST,
the basic local alignment search tool in molecular biology. To evaluate the similarity between
two strings from the alphabet � = {A,G,C, T }, we scan the two sequences from left to right,
increasing a score by 1 if the letters in corresponding positions coincide, and subtracting 1
otherwise. In the basic model that is used to assess the significance of similarities, it is assumed
that the individual strings are obtained by sampling uniformly from the alphabet �. This fits
into the above framework, with p = 1

4 , if we wish to find the prefix with maximum score and
if we consider the sequences to be infinitely long.

The traditional connection between the theory of algorithms and probability theory, as
exemplified by Knuth (2000), is the average case analysis of a given algorithm under the
assumption of random input. A standard reference for Monte Carlo and Las Vegas algorithms,
and randomized algorithms in general, is the book by Motwani and Raghavan (1995). The
study of Monte Carlo algorithms with random input seems to be less developed, but offers
some interesting connections to various areas of probability theory and statistics. For example,
with random input and an algorithm that gives the correct answer without certainty, but only
with some probability (of at least) 1 −α, it makes sense to consider the conditional probability
of a correct answer given the ‘data’, i.e. the part of the input of the algorithm on which the
output is based. In the case of algorithm (A2), the argument given above for the selection
of C ≡ C(α, p) shows that the conditional probability of a correct answer is at least 1 − α,
regardless of the actual path-segment observed, whereas this is not the case with algorithm
(A1) (or with Odlyzko’s Monte Carlo algorithm in the symmetric case). Consider, for example,
a situation in which algorithm (A1) is used on an initial segment of length n, and where Mn

happens to be equal to Sn: the algorithm would return Mn despite the fact that the conditional
probability of a correct answer, i.e. of Mn being equal to the global maximum M , is much
smaller than 1 − α. We see here a possible relationship with the conditionality principle from
theoretical statistics; see, e.g. Section 2.3(iii), pp. 38–39, of Cox and Hinkley (1974).

While such basic issues, and similarly optimality results, are certainly most interesting,
we will not pursue these any further, but will concentrate on the quantitative analysis of the
algorithms described above and their quantitative comparison. (An exception is Remark 1,
below, where we briefly return to a more abstract point of view.) We will see, for example, that
two different notions of efficiency both lead to the conclusion that algorithm (A2) is about four
times better than algorithm (A1) (in terms of the expected length of the segment of the random
walk expected) if α is small and p is close to 1

2 .

3. Main results

We first consider some explicit results for given α and p, and then turn to asymptotics. For
algorithm (A1), the distribution of τ , as defined in (1), is important.

Theorem 1. The probability-generating function and the probability mass function of τ are
given by

gτ (z) :=
∞∑
k=0

P(τ = k)zk = 2(q − p)z

2qz− 1 + √
1 − 4pqz2

(4)
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and

P(τ = 0) = 1 − p

q
, P(τ = 1) = p

(
1 − p

q

)
,

P(τ = k) =
(

1 − p

q

){
p −

�k/2�∑
j=1

(
2(j − 1)

j − 1

)
1

j
(pq)j

}
, k = 2, 3, . . . ,

(5)

respectively.

In contrast to the situation in algorithm (A1), the length of the initial segment of the random
walk needed for algorithm (A2) is now a random variable. Recall that N2(α, p) is equal to an
entry time of the Z-process.

Theorem 2. Let gC be the generating function associated with T ZC . Then, with d(z) :=√
1 − 4pqz2,

gC(z) = 2(2qz)Cd(z)

(d(z)+ 1 − 2pz)(1 + d(z))C + (d(z)− 1 + 2pz)(1 − d(z))C
. (6)

We can use (4) or (5) to calculate the quantiles needed for algorithm (A1); see the appendix.
In particular, for p = 1

4 we obtain

P(τ ≤ 22) = 0.998 796 · · · , P(τ ≤ 23) = 0.999 023 · · · .
Hence, α = 0.001 would lead to N1 = 23, but the true error probability would then be smaller
than 0.001. A similar situation arises in connection with statistical tests, where we start with a
significance level α as an upper bound for the type-I error of wrongly rejecting the hypothesis.
Translating the randomization device familiar in the latter context to the present situation would
lead us to choose N1 at random, independently of (Sk)k∈N0 , with

P(N1 = 22) = 1 − P(N1 = 23) = 0.001 − P(τ > 23)

P(τ = 23)
= 0.102 164 · · · .

This results in a procedure that fully exploits the allowed error probability, 0.001.
Similarly, we can use (6) to obtain the probability mass function for T ZC . With p = 1

4 and
α = 0.001, (3) gives C(α, p) = 6, but then the true error probability would be

P(M > 6) =
(
p

q

)7

= 1

37 = 0.000 457 · · · .

With C = 5 we obtain 0.001 371 · · · , so a randomized variant exploiting the full error margin
would have C = 5 with probability β and C = 6 with probability 1 − β, where

β = 37 · 10−3 − 1

2
= 0.5935.

Randomization also makes it possible to compare the algorithms on an equal basis, as
the nonrandomized versions may differ substantially in their actual errors. In our numerical
example, algorithm (A1) uses about 98% of α (in the sense that the actual error probability
is only 1 − 0.999 023 · · · , rather than 0.001), and algorithm (A2) only about 46%; for the
randomized algorithms we obtain

E[N1] = 22.8978 · · · , E[N2] = 9.816, and P(N2 > E[N1]) = 0.021 685 · · · .
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In order to arrive at more general conclusions, we consider the behaviour of N1 and N2 for
values of p = 1

2 − ε, ε > 0, close to the critical case, p = 1
2 , and for values of the error bound,

α, close to 0.

Theorem 3. Let N1(α, p) be the number of steps required by algorithm (A1) for a random
walk with parameter p if α is the prescribed upper bound for the error probability. Then

lim
α↓0

N1(α, p)

logα
= 1

log(2
√
pq)

for all p ∈ (0, 1
2 ) (7)

and
lim
ε↓0

ε2N1(α,
1
2 − ε) = q1−α for all α ∈ (0, 1), (8)

where q1−α denotes the (1 − α)th quantile of the distribution with Laplace transform

φ(t) = 4

2 + √
2t + 4

for all t ≥ 0 (9)

and density

f (x) =
√

8

πx
exp(−2x)

(
1 − 2

√
x exp(2x)

∫ ∞

2
√
x

exp

(
−y

2

2

)
dy

)
, x > 0. (10)

The function

z �→ exp

(
z2

2

) ∫ ∞

z

exp

(
−y

2

2

)
dy

is known as Mills’ ratio; see, e.g. Stuart and Ord (1987, Section 5.38). By using the classical
expansions for the tail of the standard normal distribution, such as given in Problem 1, p. 193, of
Feller (1968), we can easily derive approximations to f , the corresponding distribution function
F , and the quantile function q1−α = F−1(1 − α).

Theorem 4. LetN2(α, p) be the number of steps required by algorithm (A2) for a random walk
with parameter p if α is the prescribed upper bound for the error probability and C ≡ C(α, p)

is chosen according to (3). Then

E[N2(α, p)] = C − (p/q)C

q − p
− p − q(p/q)C

(q − p)2
.

In particular,

lim
α↓0

E[N2(α, p)]
logα

= 1

(1 − 2p) log(p/q)
for all p ∈ (0, 1

2 ) (11)

and

lim
ε↓0

ε2 E[N2(α,
1
2 − ε)] = − logα − (1 − α)

8
for all α ∈ (0, 1). (12)

Furthermore, ε2N2(α,
1
2 − ε) converges in distribution, as ε ↓ 0, to a probability measure with

Laplace transform

ψα(t) = 2η(t)

(2 + η(t))α1/2−η(t)/4 − (2 − η(t))α1/2+η(t)/4 , η(t) := √
4 + 2t . (13)
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On the basis of Theorems 3 and 4, we can compare the behaviours of the algorithms for
small error probabilities and, separately, for parameters of the underlying random walk that
are close to the critical value 1

2 . Again, this can be related to a statistical situation. Suppose
that we wish to test a simple hypothesis, H0, that θ = θ0, against a simple alternative, H1, that
θ = θ1, where the parameter θ determines the distribution of the data. Let α be the significance
level. Suppose that we assign a fixed upper bound, β ∈ (0, 1), for the type-II error probability.
Then, the sample size required by a given procedure is a function of the significance level
and the parameters, implying that two such procedures can be compared using the ratio of the
corresponding sample sizes. In typical cases, the limit of this ratio exists as α ↓ 0, and does
not depend on β. The limit is called the Bahadur efficiency of the two competing tests. For a
fixed α and as θ1 → θ0, in which limit it becomes more and more difficult to distinguish the
hypothesis from the alternative, the limit of the ratio of the sample sizes again exists in typical
cases. This limit is called the Pitman efficiency of the two competing tests. For details on these
efficiency concepts, we refer the reader to Chapter 14, pp. 201–205, of van der Vaart (1998).

By translating significance levels into error bounds and sample size into running time, which
here is the length of the initial segment of the random walk needed by the respective algorithm,
we can similarly introduce efficiency concepts for Monte Carlo algorithms with random input.
In the present situation, from (11) and (7) we obtain

EffB(A1,A2)(p) := lim
α↓0

E[N2(α, p)]
N1(α, p)

= log(2
√
pq)

(1 − 2p) log(p/q)

for the ‘Bahadur efficiency’ of our algorithms, and, from (12) and (8),

EffP(A1,A2)(α) := lim
p↑1/2

E[N2(α, p)]
N1(α, p)

= − logα − (1 − α)

8q1−α

for the ‘Pitman efficiency’ of our algorithms. The graphs of these two functions are given
in Figure 1. It appears that algorithm (A2) performs better. In particular, for small error
probabilities, algorithm (A2) needs only about one-half as many observations on average as
algorithm (A1) for p close to 0, and about one-quarter as many for p close to 1

2 . Note, however,
that there is no upper bound on the running time of algorithm (A2), in contrast to algorithm (A1).
Indeed, according to the limit distribution in Theorem 4, it follows that P(N2(α, p) > N1(α, p))

converges to a positive limit asp ↑ 1
2 . (To see that the limit cannot be 0, we note that the Laplace

transform of a distribution with bounded support has to be an entire function.)
A simple calculation gives

lim
p↑1/2

EffB(A1,A2)(p) = 1
4 .

To obtain the limit of EffP(A1,A2) as α ↓ 0, we use the classical expansion for Mills’ ratio
mentioned above to derive

f (x) ∼ 1√
2π

x−3/2 exp(−2x), x → ∞,

from (10). The tail of the distribution satisfies∫ ∞

x

f (t) dt ∼ 1√
8π

x−3/2 exp(−2x) as x → ∞.
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Figure 1: The efficiencies of algorithms (A1) and (A2).

From this we deduce that both q1−α ∼ − 1
2 logα and

lim
α↓0

EffP(A1,A2)(α) = 1
4 .

It seems quite remarkable that the two limits coincide, as they rely on the different concepts of
tail behaviour and distributional limits (see also Remark 2, below). Again, such an equality of
limiting efficiencies is well known in mathematical statistics: for typical testing problems, it
can be verified that the limiting approximate Bahadur efficiency, as θ1 → θ0, and the limiting
Pitman efficiency, as α ↓ 0, coincide; see, e.g. Kallenberg and Koning (1995).

4. Proofs

Proof of Theorem 1. As in Chassaing (1999), we use the classical ladder method. Let T =
T S1 be the first strictly ascending ladder time, i.e. the time needed by the random walk (Sn)n∈N0 to
arrive at 1; since p < 1

2 this may never happen. The probability-generating function associated
with the defective distribution of T is known to be

g(z) = 1 − √
1 − 4pqz2

2qz
; (14)

see, e.g. Feller (1968, p. 272). With (T , 1) as the new origin we obtain a random walk again,
identical in distribution to the process we started with and independent of the segment up to T
of the latter. The first maximum position can therefore be regarded as a geometric random sum
of summands that are independent and equal in distribution to T , conditional on T < ∞.

From (14) it follows that P(T < ∞) = P(τ > 0) = g(1) = p/q. We now use the
familiar fact that the generating function of a random sum is the composition of the generating
function of the distribution of the number of terms and the generating function associated with
the distribution of the individual summands.

In order to obtain the associated probability mass function, we note that the generating
function can be written as

gτ (z) =
(

1 − p

q

)
1 − 2qz+ √

1 − 4pqz2

2(1 − z)
, z ∈ (0, 1).
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By expanding the term on the right-hand side in powers of z and using

(1 − 4pqz2)1/2 =
∞∑
k=0

( 1
2
k

)
(−1)k22k(pq)kz2k

= 1 − 2
∞∑
k=1

(
2(k − 1)

k − 1

)
1

k
(pq)kz2k,

we arrive at

gτ (z) =
(

1 − p

q

){
1 − qz−

∞∑
k=1

(
2(k − 1)

k − 1

)
1

k
(pq)kz2k

}
(1 − z)−1

=
(

1 − p

q

){
1 + pz+

∞∑
k=2

[
p −

�k/2�∑
j=1

(
2(j − 1)

j − 1

)
1

j
(pq)j

]
zk

}
,

which proves the assertion.

Proof of Theorem 2. The processZ = (Zk)k∈N0 , defined in (2), is easily seen to be a Markov
chain with state space N0, starting point 0, and transition probabilities

P(Zk+1 = 0 | Zk = 0) = p,

P(Zk+1 = i − 1 | Zk = i) = p for all i ∈ N, (15)

P(Zk+1 = i + 1 | Zk = i) = q for all i ∈ N0.

The associated transition matrix P defines a linear operator that acts on sequences (a(i))i∈N0

of real numbers as follows: Pa = (b(i))i∈N0 , with

b(0) = pa(0)+ qa(1) and b(i) = pb(i − 1)+ qb(i + 1) for all i ∈ N.

We now fix some λ ≥ 1 and consider the equation Pb = λb, where we assume that b(0) = 1.
This leads to a simple difference equation that is uniquely solved by

bλ(i) =
(

1

2
+ λ− 2p

2c(λ)

)(
λ+ c(λ)

2q

)i
+

(
1

2
− λ− 2p

2c(λ)

)(
λ− c(λ)

2q

)i
,

where c(λ) = √
λ2 − 4pq. Since λ ≥ 1 and p < 1

2 we always have c(λ) > 0. Dropping
λ temporarily from the notation, we let f (n, i) := λ−nbλ(i) and Yn := f (n, Zn). With
Fn := σ {X0, . . . , Xn}, we then obtain

E[Yn+1 | Fn] = λ−n−1 E[bλ(Zn+1) | Zn]
= λ−n−1(Pbλ)(Zn)

= λ−nbλ(Zn)
= Yn,

meaning that (Yn,Fn)n∈N0 is a martingale. Now let T = T ZC be the time of the first visit to
C ∈ N of the processZ. The optional sampling theorem (see, e.g. Theorem 10.10(a)(ii), p. 100,
of Williams (1991)), gives E[YT ] = E[Y0] = 1; clearly T is finite and ZT ≡ C. Together these
imply that gC(1/λ) = E[λ−TC ] = 1/bλ(C).
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Proof of Theorem 3. To prove the first assertion, we introduce the independent random
variables N, T1, T2, . . . , where N has the geometric distribution

P(N = n) =
(

1 − p

q

)(
p

q

)n
, n ∈ N0,

and the distribution of Tr is the first passage distribution through r of the random walk with
parameter p, conditional on the event that a passage through r exists. In terms of ladder
variables, Tr is equal in distribution to the rth strictly ascending ladder epoch, provided
that this is finite, and N is equal in distribution to the total number of strictly ascending
ladder variables, which in the present context is equal to the global supremum. In particular,
P(τ > n) = P(TN > n) for each n ∈ N0. The distribution of Tr , k ≥ r , is given by

P(Tr = 2k − r) =
(

1

2p

)r
r

2k − r

(
2k − r

k

)
2r (pq)k

=
(

1

2p

)r
r

2k − r

k(k − 1) · · · (k − r + 1)

2k(2k − 1) · · · (2k − r + 1)

(
2k

k

)
2−2k2r (4pq)k;

see, e.g. Feller (1968, pp. 274–275). By Stirling’s formula, there exists a positive constant c0
such that

P(T1 > n) > c0n
−3/2(2

√
pq)n for all n ∈ N.

Setting c1 = c0(1 − p/q)(p/q), we see that

P(TN > n) ≥ P(N = 1, T1 > n) > c1n
−3/2(2

√
pq)n for all n ∈ N. (16)

Because
k(k − 1) · · · (k − r + 1)

2k(2k − 1) · · · (2k − r + 1)
≤ 2−r ,

it follows that

P(Tr > n) =
∑

k>(n+r)/2
P(T = 2k − r)

≤
∑

k>(n+r)/2

(
1

2p

)r
r

2k − r

(
2k

k

)
2−2k(4pq)k

≤ r

n

(
1

2p

)r ∑
k>(n+r)/2

(
2k

k

)
2−2k(4pq)k.

By applying Stirling’s formula again, we obtain a constant c2 such that

P(Tr > n) ≤ c2r

(
1

2p

)r
(2

√
pq)rn−3/2(2

√
pq)n

= c2r

(√
q

p

)r
n−3/2(2

√
pq)n.

This implies that

P(TN > n) =
n∑
r=1

P(N = r, Tr > n)+ P(N > n)

≤ c2

(
1 − p

q

) n∑
r=1

r

(√
p

q

)r
n−3/2(2

√
pq)n +

(
p

q

)n
. (17)
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Because p/q ≤ 2
√
pq, we therefore have

P(TN > n) ≤ c3(2
√
pq)n for all n ∈ N,

for some positive constant c3. Taken together, (16) and (17) imply that

logα − log c1

log(2
√
pq)

≤ N1(α, p) ≤ logα − log c3

log(2
√
pq)

,

which proves the first assertion.
To prove the second statement, we use Theorem 1 to obtain the Laplace transform, φε,

associated with ε2τε, where τε denotes the first time that the random walk with parameter
1
2 − ε attains its global maximum. We find that

φε(t) = gτε (e
−ε2t ) = 4εe−ε2t

(1 + 2ε)e−ε2t − 1 +
√

1 − (1 − 4ε2)e−2ε2t
.

Some straightforward calculations show that limε↓0 φε(t) = φ(t) for all t ≥ 0. By the
continuity theorem for Laplace transforms (see, e.g. Feller (1971, p. 431)), this implies that
ε2τε converges in distribution, as ε ↓ 0, to a random variable Z with φ(t) = E[e−tZ] for all
t ≥ 0.

To obtain the density of the distribution with Laplace transform given by (9), we note that φ
can alternatively be written as

φ(t) =
⎧⎨
⎩

1, t = 0,

2

√
t/2 + 1 − 1

t/2
, t > 0.

By using the identity∫ ∞

0
exp(−tx) 1√

2x
exp

(
−x

2

)
D−2(

√
2x) dx =

√
π

2

√
t + 1 − 1

t
,

valid for t > 0, where

D−2(z) = exp

(
−z

2

4

)(
1 − z exp

(
z2

2

) ∫ ∞

z

exp

(
−y

2

2

)
dy

)

is a parabolic cylinder function (see Gradstein and Ryshik (1981, p. 276, Equation 7.725.1),
we see that f as given in (10) is the density of the distribution with Laplace transform φ.

By using the connection with Mills’ ratio mentioned in Section 3, we can show that this
density is strictly greater than 0 on the whole range, (0,∞), of x. Hence, the convergence in
distribution implies the convergence of the quantiles. The second formula in the theorem now
follows by recalling the definition of N1 as a quantile of the distribution of τε.

Proof of Theorem 4. We could of course use Theorem 2 together with the relation

E[N2(α, p)] = g′
C(1),

but we give a direct argument instead, avoiding a tedious calculation (or recourse to computer
algebra).
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As in the proof of Theorem 2, we considerZ = (Zk)k∈N0 to be a Markov chain with transition
matrix P ; see (15). We write Ej [·] for expectation with respect to starting point j ∈ N0. Let
D = {0, 1, . . . , C − 1} and let T = T ZC be the hitting time of Dc = {C,C + 1, . . . }. Define
a function h on the state space N0 by h(j) = Ej [T ] for j ∈ N0. We are interested in E[N2],
which is equal to E0[T ]. Note that h is finite and that h(j) = 0 for each j ≥ C. By applying the
maximum principle (see, e.g. Brémaud (1999, p. 181)), we deduce that h is the unique solution
to

h =
{
Ph+ 1, on D,

0, on Dc.

This is a system of difference equations,

ph(0)+ qh(1)+ 1 = h(0),

ph(i − 1)+ qh(i + 1)+ 1 = h(i), i = 1, . . . , C − 2,

ph(C − 2)+ 1 = h(C − 1).

By setting uj = h(j)− h(j − 1), j ≥ 1, we obtain

uj+1 = p

q
uj − 1

q
,

which, after iteration and using u1 = −1/q, leads to

uj = −1 − (p/q)j

q − p
for all j ∈ N.

Because uC = −h(C − 1), h(0) = h(C − 1)− (u1 + · · · + uC−1), and

−(u1 + · · · + uC−1) = C − 1

q − p
− 1

q − p

C−1∑
j=1

(
p

q

)j

= C − 1

q − p
−

(
1

q − p

)2(
p − q

(
p

q

)C)
,

we obtain

E[N2] = h(0) = C − (p/q)C

q − p
− p − q(p/q)C

(q − p)2
.

The second and the third assertions follow by straightforward calculations, using

lim
α↓0

C(α, p)

logα
= 1

logp/q
, lim

ε↓0
εC(α, 1

2 − ε) = − logα

4
.

Finally, to prove (13) we proceed as in the corresponding part of the proof of Theorem 3, now
using (6) instead of (4).

5. Final remarks

Remark 1. We could of course combine algorithm (A1) with the ideas of Odlyzko (1995) and
Chassaing (1999), probing only a subset of the first N1 values. For algorithm (A2) such a
reduction seems not to be possible. On the other hand, if we insist on a procedure that satisfies
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the error bound conditionally on the input, as explained at the end of Section 2, and if we
consider the values S0, S1, S2, . . . as arriving successively, then algorithm (A2) is easily seen
to be optimal within the class of strategies that can be realized as stopping times with respect
to the filtration (σ {S0, . . . , Sn})n∈N0 .

Remark 2. The explicit formula (4) in Theorem 1 made it possible to obtain the distributional
asymptotics of ε2τε, as ε ↓ 0, in a direct manner in the second half of the proof of Theorem 3.
Alternatively, we could invoke the convergence of the (appropriately rescaled) random walk
with parameter 1

2 − ε to a Brownian motion with drift parameter −2. (Note, however, that
convergence in distribution does not imply convergence of the respective first moments.) This
provides an interpretation ofZ as the time at which the limit process attains its global maximum;
see also Borodin and Salminen (2002, p. 65). Similarly, we can interpret the limit in Theorem 4
as the distribution of the first hitting time at −(logα)/4 of a Brownian motion with drift
parameter 2 and reflecting boundary at 0.

Remark 3. The problem of finding the global maximum of a random walk from a finite
initial segment also appears in insurance mathematics in connection with the simulation of
ruin functions; see, e.g. Chan et al. (2003), but the step distribution is not concentrated on
{−1, 1} in this context.

Appendix A.

The numerical values mentioned after Theorem 2 can be obtained as taucdf[24] and
taucdf[23] respectively after running the following simple and self-explanatory R program:

1 n <- 128

2 z <- exp(complex(real=0*(0:(n-1)),imag=-2*pi*(0:(n-1))/n))

3 p <- 0.25

4 g <- function(z){(2*(1-2*p)*z)/(2*(1-p)*z-1+sqrt(1-4*p*(1-p)*zˆ2))}

5 y <- fft(g(z),inv=TRUE)/n

6 taucdf <- cumsum(Re(y))

To prevent wraparound effects the power of 2 in line one has to be made sufficiently large.
Use of the fast Fourier transform algorithm makes the calculation of high quantiles feasible, even
if p is close to 1

2 . Note that taucdf[k] is the numerical approximation to P(τ ≤ k−1), k =
1, . . . , n. For details on the language or, more appropriately, the statistical environment R, we
refer the reader to the URL http://cran.r-project.org. Other examples of the use of fast Fourier
transforms in computational probability, together with a discussion of associated errors and
ways to handle them, can be found in Grübel (1989) and Grübel and Hermesmeier (1999). For
the distribution of τ we could of course use (5) instead, but for the corresponding calculation
using algorithm (A2) we only have (6); we do not know an explicit formula for the corresponding
mass function.
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