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MIXED POISSON APPROXIMATION OF NODE DEPTH
DISTRIBUTIONS IN RANDOM BINARY SEARCH TREES

BY RUDOLF GRÜBEL AND NIKOL ČE STEFANOSKI

Universität Hannover

We investigate the distribution of the depth of a node containing
a specific key or, equivalently, the number of steps needed to retrieve an item
stored in a randomly grown binary search tree. Using a representation in terms
of mixed and compounded standard distributions, we derive approximations
by Poisson and mixed Poisson distributions; these lead to asymptotic
normality results. We are particularly interested in the influence of the key
value on the distribution of the node depth. Methodologically our message is
that the explicit representation may provide additional insight if compared to
the standard approach that is based on the recursive structure of the trees.
Further, in order to exhibit the influence of the key on the distributional
asymptotics, a suitable choice of distance of probability distributions is
important. Our results are also applicable in connection with the number
of recursions needed in Hoare’s [Comm. ACM4 (1961) 321–322] selection
algorithm FIND.

1. Introduction. The classical algorithm for storing data sequentially into a
binary search tree proceeds as follows: The first item is put into the root node;
subsequent elements are compared to the existing nodes, starting with the root,
moving to the left if smaller than and to the right if greater than the content of
the node until an external node is found. If there aren distinct (and comparable)
values, then we obtain a random binary tree if we assume that all permutations of
the data are equally likely. This data structure and its properties are discussed in
the standard texts of the area; see, for example, Knuth (1973), Cormen, Leiserson
and Rivest (1990) and Sedgewick and Flajolet (1996). Mahmoud (1992) gives a
book-length treatment of random search trees.

Suppose now that a binary search tree is associated with a random permutation
of the set{1,2, . . . , n} in the above manner. One of the quantities of interest in
this structure is the depthXn,l of the node containingl, that is, its distance from
the root; 1+Xn,l is the number of steps needed to retrieve the valuel (“successful
search”). Arora and Dent (1969), in an early paper on the subject, obtained a simple
and explicit formula for the corresponding expectation,

E(1+ Xn,l) = Hl + Hn+1−l − 1,(AD)
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whereHk := ∑k
i=1 1/i, k ∈ N, are the harmonic numbers. This result implies that

the average number of steps needed grows logarithmically only. It is easily seen,
however, thatXn,l can be as large asn − 1, which motivates a closer analysis of
its distribution.

In contrast to many other characteristics of the tree such as its height or
total path length, the depth depends on two parameters, the sizen of the base
set and the key value (or label)l of the node, which complicates the analysis.
Averaging the distributions over the second parameter avoids this problem; the
result can be interpreted as the distribution of the depth of a key or node
selected uniformly at random from the available range{1, . . . , n}. Louchard (1987)
obtained a corresponding asymptotic normality result; see also Section 2.5 in
Mahmoud (1992). The distance of two randomly selected nodes has recently been
investigated by Mahmoud and Neininger (2003). Averaging leads to a loss of
information, though. For example, it is immediate from (AD) that

lim
n→∞

EXn,1

logn
= 1, lim

n→∞
EXn,�n/2�

logn
= 2,

that is, the depth of the node with the smallest key is only about half of that of the
node with the median key value on average, if the size of the base set is large.

Our intention here is to obtain distributional approximations and asymptotics
for Xn,l that are sufficiently precise to show the dependence of the depth of a
node on its key. The main tool is a distributional representation ofXn,l in terms
of mixed and compounded distributions from well-known families (Theorem 1).
In contrast to many investigations in this area we do not base our analysis on
a recursion for the quantities of interest, but exploit the relationship to records
which seems to have been noticed first by Devroye (1988). Devroye used this
connection to investigate the depth of the last node; he wrote that it “allows
us to obtain. . .hopefully insightful proofs. . . .” The representation can also
be used to obtain the expectation ofXn,l and therefore leads to an alternative
proof for Arora and Dent’s (1969) formula. Somewhat to our surprise, asymptotic
normality in the sense that(Xn,ln − EXn,ln)/

√
EXn,ln converges in distribution

to a standard normal variable holds foreverysequence(ln)n∈N. This result has
also been obtained by Devroye and Neininger (2004). It implies Louchard’s
(1987) result for randomly selected nodes, but it can also be used to see the
influence of the key on the node depth on the level that is apparent from
the consequence of (AD) mentioned above: If the key valueln varies with n

such that logln/ logn → t ∈ [0,1], then (Xn,ln − (1 + t) logn)/
√

(1+ t) logn

is asymptotically standard normal. However, ifln/n → t as n → ∞, then the
approximating normal distribution does not depend ont , as long as 0< t < 1.
Hence, with this level of detail only extreme values of the key will have a
noticeable influence on the depth distribution.

The proof of asymptotic normality is based on a Poisson approximation result
(Theorem 3), where we use total variation distance. If we replace the total
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variation distance by an appropriate Wasserstein metric, then a mixed Poisson
approximation is needed since with this metric shifts are not swamped by the fact
thatEXn,ln → ∞ asn → ∞. Indeed, the mixing distribution will asymptotically
be close to a shifted and reflected exponential distribution, with shift 2 logn +
2γ + log(t (1− t)) depending ont := limn→∞ ln/n (Theorem 6;γ denotes Euler’s
constant).

These results are given in the next section. In the final section we discuss various
consequences of our results and also relate these to the number of recursions
needed by Hoare’s (1961) selection algorithm FIND.

We write L(X) for the distribution of the random variableX, with X
distr= Y

abbreviatingL(X) = L(Y ), and 1A for the indicator function of the setA.
Instead ofL(X) = µ, with some probability distributionµ, we also writeX ∼ µ.

Distributional convergence is denoted by
distr→ andN(0,1) is the standard normal

distribution, so thatXn
distr→ Z, Z ∼ N(0,1) is short for

lim
n→∞P (Xn ≤ x) = �(x) := 1√

2π

∫ x

−∞
e−y2/2 dy for all x ∈ R.

2. Results. Our first result displays the distribution ofXn,l in terms of
mixed and compounded standard distributions from the Bernoulli, uniform
and hypergeometric families. The representation becomes transparent once we
consider an example. Suppose we haven = 20 and l = 11. A particular
permutation is given in the first line of Table 1.

In the second line of Table 1 the part of the permutation to the left of the element
of interest is divided into those that are greater (+) or smaller (−) than this element.
The third line marks the descending (↓) and ascending (↑) records in these sublists,
where theith elementxi of a list (x1, . . . , xn) of numbers is a descending record if
xi = min1≤j≤i xj , ascending ifxi = max1≤j≤i xj .

Figure 1 shows the search tree corresponding to the data in Table 1. The crucial
point to note is that the path from the root of the tree to the element of interest
passes through the descending records in the “+”-list, moving to the left, and the
ascending records in the “−”-list, moving to the right.

We recall the definition of some standard distributions:X is said to have a
Bernoulli distribution with parameterp if P (X = 1) = 1 − P (X = 0) = p, to
be uniformly distributed on the (finite) setS if P (X = s) = 1/|S| for all s ∈ S, and

TABLE 1
A permutation and its subrecord structure forn = 20, l = 11

π 18 1 5 6 10 20 3 13 9 17 7 12 8 16 14 19 2 11 4 15
>,< + − − − − + − + − + − + − + + + − �

records ↓ ↑ ↑ ↑ ↑ ↓ ↓ �
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FIG. 1. The binary search tree withπ as in Table1.

to have a hypergeometric distribution with parametersN , M andn if

P (X = k) =
(M

k

)(N−M
n−k

)
(N
n

) for k = 0, . . . , n.

We abbreviate these toX ∼ Ber(p), X ∼ unif(S) and X ∼ HypGeo(N;M,n),
respectively. By a random permutation of a finite setS we always mean a
permutation that is uniformly distributed on the|S|! possible values.

THEOREM 1. Suppose that N,G1,l, . . . ,Gn,l,K1,K2,K3, . . . ,K
′
1,K

′
2,

K ′
3, . . . are independent random variables withN ∼ unif({1, . . . , n}), Gm,l ∼

HypGeo(n−1; l−1,m−1) for m = 1, . . . , n andKi,K
′
i ∼ Ber(1/i) for all i ∈ N.

Then

Xn,l
distr=

GN,l∑
i=1

Ki +
N−1−GN,l∑

i=1

K ′
i .

PROOF. We first formalize the construction that we outlined above with the
help of an example. Remember thatn and l are given. Letπ be a random
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permutation of{1, . . . , n} and letN := π−1(l) be the position ofl. Further, let

S− := {1 ≤ i < N :π(i) < l} = {i1, . . . , iG},
S+ := {1 ≤ i < N :π(i) > l} = {j1, . . . , jN−1−G},

with i1 < · · · < iG andj1 < · · · < jN−1−G and let

π− := (
π(i1), . . . , π(iG)

)
, π+ := (

π(j1), . . . , π(jN−1−G)
)
,

R− :=
G∑

r=1

r−1∏
k=1

1{π(ik)<π(ir )}, R+ :=
N−1−G∑

r=1

r−1∏
k=1

1{π(ik)>π(ir )}.

With these constructions we haveXn,l = R− + R+; see Section 13.4 in Cormen,
Leiserson and Rivest (1990) for a formal proof. It remains to verify the
distributional statements. For these, we simply recall some well-known or easily
checked properties of records and random permutations; see, for example, Arnold,
Balakrishnan and Nagaraja (1998): Obviously,N ∼ unif({1, . . . , n}). Given
N = m, (π(1), . . . , π(m − 1)) is a random permutation of the set{π(i) : 1 ≤
i < m}. We can viewπ(i) as the result of theith draw, without replacement, from
an urn withn − 1 balls,l − 1 being “white,” meaning a result less thanl. Hence,
conditionally onN = m,

G := |S−| ∼ HypGeo(n − 1; l − 1,m − 1).

Conditionally on N = m and G = k, π− and π+ are independent random
permutations of{π(i1), . . . , π(ik)} and{π(j1), . . . , π(jm−1−k)}, respectively. The
distributional structure of records in random permutations is such that the products
in the definition ofR− and R+, which indicate the presence of a record at
positionr , are independent and Bernoulli distributed with parameter 1/r .

The assertion of the theorem now follows on comparing the respective
(conditional) distributions in the above decomposition to those in the constructive
representation.�

From the proof of the theorem it is evident that the first sum in the representation
corresponds to the number of moves to the right on the path from the root to the
node containingl; similarly, the second sum corresponds to the moves to the left.
In this context it is interesting to note that

GN,l ∼ unif({0, . . . , l − 1}), N − 1− GN,l ∼ unif({0, . . . , n − l}).
To see this, we simply calculate

P (GN,l = k) = 1

n

n∑
m=1

P (Gm,l = k)

= 1

n

n∑
m=1

(l−1
k

)( n−l
m−1−k

)
( n−1
m−1

)
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= 1

n

n−1∑
m=0

(m
k

)(n−1−m
l−1−k

)
(n−1
l−1

)
= 1

n

(n
l

)
(n−1
l−1

) = 1

l
for k = 0, . . . , l − 1,

using HypGeo(n − 1; l − 1,m − 1) = HypGeo(n − 1;m − 1, l − 1) and one of
the basic identities for binomial coefficients given, for example, as equation (5.26)
in Graham, Knuth and Patashnik (1989). The statement onN − 1− GN,l follows
from similar calculations or from symmetry considerations (see also Section 3).

Note, however, thatGN,l andN − 1 − GN,l are not independent; their joint
distribution, which will be used repeatedly below, is given by

P (GN,l = i,N − 1− GN,l = j) = 1

n

(i+j
i

)(n−1−i−j
l−1−i

)
(n−1
l−1

) .(JD)

For our first approximation result we require the following bound for the variance
of H(G)+H(N −1−G), where we have writtenH(G) instead ofHG. As usual,
we putH(0) = H0 = 0.

LEMMA 2. Let G and N be random variables with joint distribution given
by (JD).Then

var
(
H(G) + H(N − 1− G)

) ≤ 28.

PROOF. Because of var(X + Y ) ≤ var(X) + var(Y ) + 2 var(X)1/2 var(Y )1/2,
it is enough to bound the variance ofH(G) and H(N − 1 − G) by 7. The
remarks following Theorem 1 imply that both can (individually) be represented
in distribution asH(�kU) with U ∼ unif(0,1) and k = l and k = n − 1 − l,
respectively. We may assume thatk ≥ 1, and then, using Minkowski’s inequality,

var
(
H(�kU)) ≤ E

(
H(�kU) − logk

)2

= E
((

H(�kU) − logk
)
1{U<1/k}

)2

+ E
((

H(�kU) − logk
)
1{U≥1/k}

)2

≤ (logk)2

k
+ (

(EV 2
k )1/2 + (EW2

k )1/2)2
,

with

Vk := (
H(�kU) − log(�kU))1{U≥1/k},

Wk := 1{U≥1/k} log
�kU

k
.
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The first term is bounded by 4e−2; for Vk we use that|Hj − logj | ≤ 1 for all
j ∈ N. Finally,

EW2
k = 1

k

k−1∑
j=1

(
log

j

k

)2

≤
∫ 1

0
(logx)2 dx = 2,

which gives var(H(�kU)) ≤ 4e−2 + (1+ √
2)2 < 7. �

Our first result shows that the distribution ofXn,l can be approximated by a
Poisson distribution with the same mean; it comes with an explicit error bound.
Recall that the total variation distance of two probability measuresµ and ν

concentrated onN0 is given by

dTV(µ, ν) = sup
A⊂N0

|µ(A) − ν(A)| = 1
2

∞∑
k=0

|µ({k}) − ν({k})|.

Further, for a probability measureν concentrated on the nonnegative half line
[0,∞) we write MixPo(ν) for the mixed Poisson distribution with mixing
measureν, that is,

MixPo(ν)({k}) =
∫

e−λ λk

k! ν(dλ) for all k ∈ N0.

With ν = δλ, the one-point measure onλ > 0, we obtain the usual Poisson
distribution Po(λ). This also holds forλ = 0 as we interpret Po(0) asδ0.

THEOREM 3. With the above notation,

sup
l∈{1,...,n}

dTV
(
L(Xn,l),Po(EXn,l)

) ≤ 28+ π2

logn
for all n ≥ 2.

PROOF. We first give a conditional approximation by a Poisson distribution
which leads to an approximation by a mixed Poisson distribution. The latter will
then be approximated by a Poisson distribution with the same mean.

We use the following fundamental Poisson approximation result: IfX1, . . . ,Xn

are independent withXi ∼ Ber(pi), then

dTV

(
L

(
n∑

i=1

Xi

)
,Po

(
n∑

i=1

pi

))
≤ 1∑n

i=1 pi

n∑
i=1

p2
i ;

see, for example, page 8 in Barbour, Holst and Janson (1992). Together with
the representation in Theorem 1 this immediately implies the following bound for
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the Poisson approximation of the conditional distributions:

dTV
(
L(Xn,l|G = i,N − 1− G = j),Po(Hi + Hj)

)

≤ 1

Hi + Hj

(
i∑

l=1

1

l2
+

j∑
l=1

1

l2

)

≤ π2

3Hi+j

for i + j > 0; for i = j = 0 the distance is 0. Note thati + j corresponds toN −1,
which is uniformly distributed on{0, . . . , n−1}. The unconditioning step therefore
leads to

dTV
(
L(Xn,l),MixPo(µn,l)

) ≤ π2

3

1

n

n−1∑
m=1

1

Hm

,

whereµn,l denotes the distribution ofH(G)+H(N −1−G). Standard elementary
arguments show that

∑n−1
m=1 1/Hm ≤ 3n/ logn for n ≥ 2.

A mixed Poisson distribution can be approximated by an ordinary Poisson
distribution with the same mean. Using total variation distance we have, according
to Theorem 1.C(ii) in Barbour, Holst and Janson (1992),

dTV
(
MixPo(µn,l),Po(EXn,l)

) ≤ σ 2

EXn,l

,

with σ 2 the variance associated withµn,l . Here we have used that the expectation
associated withµn,l is equal toEXn,l . An appeal to Lemma 2 and the triangle
inequality now completes the proof.�

We do not claim that the numerical values in the bound are tight; for us, the
more important aspect is the fact that the bound does not depend onl. In particular,
with (ln)n∈N a sequence of integers with 1≤ ln ≤ n for all n ∈ N, but completely
arbitrary otherwise, andYn ∼ Po(EXn,ln),∣∣∣∣P

(
Xn,ln − EXn,ln√

EXn,ln

≤ x

)
− �(x)

∣∣∣∣
≤ dTV

(
L

(
Xn,ln

)
,L(Yn)

) +
∣∣∣∣P

(
Yn − EYn√

var(Yn)
≤ x

)
− �(x)

∣∣∣∣
for all x ∈ R, so the asymptotic normality of Poisson distributions with parameter
tending to infinity and the bound in Theorem 3 together imply that

Xn,ln − EXn,ln√
EXn,ln

distr→ Z, Z ∼ N(0,1),
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as n → ∞. [In fact, combining this with the Berry–Esseen theorem we obtain
the rateO((logn)−1/2) for the Kolmogorov–Smirnov distance.] Special cases can
be obtained on using Arora and Dent’s formula (AD). For example, if

lim
n→∞

min{log(ln), log(n − ln)}
logn

= t(SC)

for somet ∈ [0,1], then

Xn,ln − (1+ t) logn√
(1+ t) logn

distr→ Z, Z ∼ N(0,1).

In particular, ifln/n → t ∈ (0,1), then(Xn,ln −2 logn)/
√

2 logn is asymptotically
standard normal, irrespective of the value oft .

Louchard (1987) showed that, withUn ∼ unif({1, . . . , n}) independent of the
search trees,

Xn,Un − 2 logn√
2 logn

distr→ Z, Z ∼ N(0,1).

This can now be derived from (SC) via the representationUn = �nU� with
U ∼ unif(0,1) by conditioning onU = t ∈ (0,1). (A conditioning argument can
also be used to extend the bound in Theorem 3 to randomly chosenl-indices.) The
special case also makes precise the intuitive picture that nodes with extreme keys,
that is, withl being close to 1 orn, have lesser depth and will be found faster than
those “within” the range from 1 ton.

In order to see the influence of the key on the node depth in the midrange,
by which we mean thatln/n → t for somet with 0 < t < 1, we have to use a
different metric for probability distributions. This becomes obvious as soon we
expandEXn,ln up to constants, since in an asymptotic normality result constant
shifts do not matter asymptotically if the scaling factors tend to infinity. If we use
the total variation distance, this even holds on the Poisson approximation level as

lim
λ→∞dTV

(
Po(λ + c),Po(λ)

) = 0 for all c > 0.

Our second result shows that with a suitable Wasserstein metric shifts do become
visible. There are two consequences: We now need a mixed Poisson distribution
as approximating measure, and we lose on the rate side. Following Barbour, Holst
and Janson (1992), we consider the distancedW for probability distributionsµ, ν

on (the Borel subsets of) the real line defined by

dW(µ, ν) := sup
{∣∣∣∣

∫
f dµ −

∫
f dν

∣∣∣∣ :f :R → R, sup
|x−y|≤1

|f (x) − f (y)| ≤ 1
}
.

For distributions concentrated on the nonnegative integers it can be shown that

dW(µ, ν) =
∞∑

k=0

∣∣µ([k,∞)
) − ν

([k,∞)
)∣∣.
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Hence, ifX andY are random variables with distributionsµ andν, respectively,
then dW(µ, ν) ≥ |EX − EY |, which in turn implies that Po(λ + c) and Po(λ)

remain distinguishable under this distance ifλ → ∞, c > 0 fixed (we generally
usedW only in connection with distributions with finite mean). Further,dW can be
realized by a suitable coupling in the sense that

dW(µ, ν) = min{E|X − Y | :X ∼ µ,Y ∼ ν}.
The following lemma contains two properties of the Wasserstein distance; their
proof makes use of the above alternative expressions fordW . When we use the first
of these below we will speak of unconditioning; a similar property for the total
variation distance has already been used in the proof of Theorem 3. The second
property shows thatµ �→ MixPo(µ) is a weakdW -contraction.

LEMMA 4. (a)If X with P (X ∈ N) = 1 andY are random variables such that

dW

(
L(X|Y = y),Po(φ(y))

) ≤ f (y)

for all y, with measurable functionsφ andf , then

dW

(
L(X),MixPo

(
L(φ(Y ))

)) ≤ Ef (Y ).

(b) For any two probability distributionsµ,ν on the nonnegative real line,

dW

(
MixPo(µ),MixPo(ν)

) ≤ dW(µ, ν).

PROOF. (a) We condition on the value ofY ;
∫ · · ·L(Y )(dy) means that we

integrate with respect to the distribution ofY :

dW

(
L(X),MixPo

(
L(φ(Y ))

))
=

∞∑
k=0

∣∣∣∣
∫ (

L(X|Y = y)
([k,∞)

) − Po(φ(y))
([k,∞)

))
L(Y )(dy)

∣∣∣∣
≤

∫ ∞∑
k=0

∣∣L(X|Y = y)
([k,∞)

) − Po(φ(y))
([k,∞)

)∣∣L(Y )(dy)

=
∫

dW

(
L(X|Y = y),Po(φ(y))

)
L(Y )(dy).

(b) Let (Nt)t≥0 be a unit rate Poisson process and letX and Y be random
variables, independent of the process, withX ∼ µ, Y ∼ ν and dW(µ, ν) =
E|X − Y |. ThenNX ∼ MixPo(µ), NY ∼ MixPo(ν) so that by conditioning on
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X andY and considering the casesX > Y andX ≤ Y separately,

dW

(
MixPo(µ),MixPo(ν)

) ≤ E|NX − NY |
= E(E[|NX − NY ||X,Y ])
= E|X − Y | = dW(µ, ν). �

We also need an elementary estimate related to hypergeometric distributions.

LEMMA 5. With X ∼ HypGeo(N;M,n),

E

(∣∣∣∣log
X

EX

∣∣∣∣1{X>0}
)

≤ 4N logN

nM
+ 2

√
N

nM
.

PROOF. We use

EX = nM

N
, var(X) ≤ nM

N

together with Chebyshev’s inequality, the bound logN for the integrand, the fact
that | log(1+ x)| ≤ 2|x| on |x| ≤ 1/2, andE|X − EX| ≤ √

var(X) to obtain

E

(∣∣∣∣log
X

EX

∣∣∣∣1{X>0}
)

≤ (logN)P

(
|X − EX| ≥ EX

2

)
+ 2E

∣∣∣∣ X

EX
− 1

∣∣∣∣
≤ 4N logN

nM
+ 2

√
N

nM
. �

We can now state and prove our second approximation result for key values in
the central range.

THEOREM 6. Suppose thatln varies withn such that

ln

n
= t + O

(
1√

logn

)

with somet ∈ (0,1). Let

νn,t := L
((

2 logn + 2γ + log
(
t (1− t)

) − 2X
)+)

,

whereX is exponentially distributed with mean1. Then

dW

(
L

(
Xn,ln

)
,MixPo(νn,t )

) = O

(
1√

logn

)
.

PROOF. We continue to use the notation introduced in the proof of Theorem 3
and again begin by comparing conditional distributions to Poisson distributions.
The basic result for the Wasserstein distance, obtained by combining Lemma 1.1.5
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and Remark 1.1.7 in Barbour, Holst and Janson (1992), is the following: If
X1, . . . ,Xn are independent withXi ∼ Ber(pi), then

dW

(
L

(
n∑

i=1

Xi

)
,Po

(
n∑

i=1

pi

))
≤ 2√∑n

i=1 pi

n∑
i=1

p2
i .

In our situation we obtain with the representation in Theorem 1, abbreviat-
ing GNn,ln to Gn,

dW

(
L

(
Xn,ln |Gn = i,Nn − 1− Gn = j

)
,Po(Hi + Hj)

)

≤ 2√
Hi + Hj

(
i∑

m=1

1

m2 +
j∑

m=1

1

m2

)
≤ 2π2

3
√

Hi+j

.

Unconditioning and using(logn)1/2 ∑n−1
m=1 H

−1/2
m = O(n), we see that

dW

(
L(Xn,l),MixPo(µn)

) = O

(
1√

logn

)
,

whereµn := L(H(Gn) + H(Nn − 1 − Gn)). Using the triangle inequality and
Lemma 4(b) we see that it remains to show thatdW(µn, νn,t ) = O((logn)−1/2).
This will follow if we can find random variablesXn andYn such thatL(Xn) = µn,
L(Y+

n ) = νn,t and
√

lognE|Xn −Yn| = O(1). (Because ofXn ≥ 0, going fromYn

to Y+
n will not increase the Wasserstein distance to the distribution ofXn.) Let

U ∼ unif(0,1) andNn := �nU� for all n ∈ N. With

Xn := H(Gn) + H(Nn − 1− Gn),

Yn := 2 logn + 2γ + log
(
t (1− t)

) + 2 logU,

the distributional requirements are satisfied and we have

|Xn − Yn| ≤
6∑

i=1

|Zi,n|

with

Z1,n := H(Gn) − log(Gn)1{Gn>0} − γ,

Z2,n := log(Gn)1{Gn>0} − log(ln − 1) − log
(

Nn

n

)
,

Z3,n := log(ln − 1) − log(nt) + log
(

Nn

n

)
− logU,

Z4,n := H(Nn − 1− Gn) − log(Nn − 1− Gn)1{Nn−1−Gn>0} − γ,

Z5,n := log(Nn − 1− Gn)1{Nn−1−Gn>0} − log(n − 1− ln) − log
(

Nn

n

)
,

Z6,n := log(n − 1− ln) − log
(
n(1− t)

) + log
(

Nn

n

)
− logU.
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For the first of these we use the fact that, for some constantC < ∞,

|Hn − logn − γ | ≤ C

n
for all n ∈ N,

andL(Gn) = unif({0, . . . , ln − 1}) to obtain

E|Z1,n| ≤ γP (Gn = 0) + CE

(
1

Gn

1{Gn>0}
)

= γ

ln
+ C

ln

ln−1∑
k=1

1

k
= O

(
logn

n

)
.

The second term is slightly more complicated as it involves bothGn and Nn.
Conditioning on the latter we get

E|Z2,n| ≤ E(E[|Z2,n||Nn]).
On {Nn = 1} we haveGn ≡ 0, which leads to

E[|Z2,n||Nn = 1] = log
(

n

ln − 1

)
= O(1).

Together withP (Nn = 1) = 1/n this givesE|Z2,n|1{Nn=1} = O(1/n). We may
therefore assume thatNn > 1 as long as we deal withZ2,n.

We use another decomposition,

|Z2,n| ≤ Z2,1,n + Z2,2,n + Z2,3,n

with

Z2,1,n =
∣∣∣∣log

Gn

E[Gn|Nn]
∣∣∣∣1{Gn>0},

Z2,2,n =
∣∣∣∣log

Nn − 1

n − 1
− log

Nn

n

∣∣∣∣,
Z2,3,n =

∣∣∣∣log
Nn(ln − 1)

n

∣∣∣∣1{Gn=0}.

Lemma 5 yields

E

[∣∣∣∣log
Gn

E[Gn|Nn]
∣∣∣∣1{Gn>0}

∣∣∣Nn

]
≤ 4(n − 1) log(n − 1)

(Nn − 1)(ln − 1)
+ 2

√
n − 1

(Nn − 1)(ln − 1)

onNn > 1, which together with

1

n

n−1∑
k=1

log(n − 1)

k
= O

(
1√

logn

)
,

1

n

n−1∑
k=1

1√
k

= O

(
1√

logn

)
,
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givesEZ2,1,n1{Nn>1} = O((logn)−1/2). ForZ2,2,n we obtain

EZ2,2,n1{Nn>1} = 1

n

n∑
k=2

∣∣∣∣log
k − 1

n − 1
− log

k

n

∣∣∣∣
≤ 1

n

n∑
k=2

(
logk − log(k − 1)

) + 1

n

n∑
k=2

(
logn − log(n − 1)

)

= 1

n
logn + n − 1

n
log

n

n − 1

= O

(
logn

n

)
.

On {Nn >
√

n } we have

E
[
1{Gn=0}|Nn

] ≤
(

n − ln

n − √
n

)√
n

≤ κ
√

n

for someκ < 1 andn large enough, hence

EZ2,3,n1{Nn>1} = E
(
E[Z2,3,n|Nn]1{1<Nn≤√

n }
)

+ E
(
E[Z2,3,n|Nn]1{Nn>

√
n }

)

≤ 1

n

�√n∑
k=2

∣∣∣∣log
k(ln − 1)

n

∣∣∣∣ + 1

n

n∑
k=�√n+1

log(ln)κ
√

n.

Both terms on the right-hand side are obviouslyO((logn)−1/2) so that this rate
also holds forEZ2,3,n1{Nn>1} and therefore forE|Z2,n| too.

For Z3,n we use the rate condition onln
n

− t together with the following
argument which is based on the construction ofNn:

E

∣∣∣∣log
Nn

n
− logU

∣∣∣∣ = E log
Nn

n
− E logU

= 1

n

n∑
k=1

log
k

n
+ 1

= 1

n
log(n!) − logn + 1

= O

(
logn

n

)
.

Finally, adapting the arguments used forZi,n to Zi+3,n, i = 1,2,3, is a
straightforward task. �
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3. Miscellaneous comments. We relate our findings to another classical
algorithm in Section 3.1. In Section 3.2 we discuss the expectation and the
variance ofXn,l . The use of (and need for) other probability metrics, together
with the relationship between total variation and Wasserstein distance, are briefly
considered in Section 3.3. The final subsection deals with another noteworthy
aspect of the representation ofXn,l as the sum of the number of moves to the
right and the number of moves to the left.

3.1. A situation very similar to the one considered above arises in connection
with Hoare’s (1961) selection algorithm FIND, a randomized divide-and-conquer
algorithm that selects thelth smallest element of a totally ordered setS of
sizen in a recursive manner: First, anx from S is chosen uniformly at random.
Comparing this element to all others, we obtain the subsetsS− := {y ∈ S :y < x}
andS+ := {y ∈ S :y > x}. We continue with(l, S) replaced by(l, S−) if the size
k := |S−| is greater than or equal tol and with (l − 1 − k,S+) if k < l − 1. If
k = l − 1, then we stop and returnx. For the time required by the algorithm the
number of comparisonsCn,l is most important, but the numberRn,l of recursions
has also been investigated. Instead of introducing randomness via the selection of
the pivotal element, we can equivalently assume that the data are random, with all
permutations being equally likely, that we operate on lists rather than sets and that
we always choose the first element of the list as the pivot. This connects FIND to
binary search trees, withS− andS+ corresponding to the left and right subtree,
respectively, and indeed, it is well known thatRn,l is equal in distribution toXn,l

(or to 1+ Xn,l if we include the initial step).
Again, details are given in many of the standard textbooks; see also the recent

book by Mahmoud (2000). As with binary search trees, if interest is in the behavior
of these quantities forn large, one can average out thel. This leads to results on the
number of comparisons and recursions needed for a randomly chosenl; see, for
example, Section 7.5 in Mahmoud (2000) and the references given there. Instead,
Grübel and Rösler (1996) considered the whole functionl �→ Cn,l . The resulting
limit theorem for the stochastic processes(Cn,�tn�)0≤t≤1 implies the distributional
convergence ofCn,ln/n if the sequence(ln)n∈N is such thatln/n → t asn → ∞ for
somet ∈ [0,1]; the limit distribution depends ont . A different approach, leading to
this result more easily, is given in Grübel (1998). The results in the previous section
cover similar aspects for the number of recursions required. In particular, the terms∑GN,l

i=1 Ki and
∑N−1−GN,l

i=1 K ′
i in Theorem 1 represent the number of times that

the element of interest is put intoS− andS+, respectively, in the course of the
algorithm. It is interesting to note that, in contrast to the situation with the number
of comparisons, we have concentration of mass for the number of recursions in the
sense thatRn,ln/ERn,ln converges to 1 in probability. An analogue to the result in
Grübel and Rösler (1996) would be a functional limit theorem for the “depth plot”
l �→ Xn,l which, incidentally, characterizes the binary search tree. Figure 2 shows
this plot for the permutation in Table 1.
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FIG. 2. The depth plott �→ Xn,�nt� for the permutation in Table1.

3.2. The representation in Theorem 1 leads to an alternative proof of (AD).
LetY := ∑GN,l

i=1 Ki , Z := ∑N−1−GN,l

i=1 K ′
i , with the notation as in Theorem 1. Using

GN,l ∼ unif({0, . . . , l−1}), EKi = 1/i and equation (6.67) in Graham, Knuth and
Patashnik (1989), we obtain

EY = 1

l

l−1∑
j=0

j∑
i=1

1

i
= 1

l

l−1∑
j=0

Hj = Hl − 1.

Together with a similar calculation forZ, this gives

EXn,l = EY + EZ = Hl + Hn+1−l − 2.

The variance ofXn,l is mentioned in Arora and Dent (1969); the explicit formula

var(Xn,l) = 2(n + 1)

l(n + 1− l)
Hn +

(
1− 2(n + 1)

l(n + 1− l)

)
(Hl + Hn+1−l)

− H
(2)
l − H

(2)
n+1−l + 2

l(n + 1− l)
+ 2,

(KP)

with H
(2)
n := ∑n

k=1 1/k2, is given in Kirschenhofer and Prodinger (1998).
Obtaining this from our representation is a somewhat tedious task that boils down
to an unsightly formula involving harmonic numbers and a multitude of binomial
coefficients. In contrast to the situation withEXn,l , this does not seem to lead to
an intuitive or short proof, so we do not give the details.
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3.3. We have pointed out in Section 2 that the total variation distance will
not distinguish between, say, Po(λ) and Po(λ + c) with c constant asλ → ∞,
so we may havedTV(L(Xn),L(Yn)) → 0 even ifEXn − EYn does not vanish
asymptotically asn → ∞. For general distributions on the real line we may
conversely have a small Wasserstein distance together with a large total variation
distance, but for distributions concentrated on the integers the simple relation

µ({k}) = µ
([k,∞)

) − µ
([k + 1,∞)

)
implies that

dTV(µ, ν) ≤ 2dW(µ, ν).

Using dW instead ofdTV, we obtained an approximation that is asymptoti-
cally correct with respect to first moments in the sense that limn→∞ dW(L(Xn),

L(Yn)) = 0 implies limn→∞(EXn − EYn) = 0. From (KP) and some straight-
forward calculations it follows that we would need yet another metric and a
more detailed expansion to obtain an approximation that is asymptotically cor-
rect for second moments too; see, for example, the metric used in Mahmoud and
Neininger (2003).

3.4. The simplification for the two constituent parts ofXn,l that we used
in Section 3.2 has the following noteworthy consequence: The distribution of∑GN,l

i=1 Ki , with the assumptions as in Theorem 1, is equal to that of
∑l

i=1 Ki − 1,
which makes the random summation index disappear. WithX←

n,l andX→
n,l for the

number of moves to the left and right, respectively, this means that

L(1+ X→
n,l) = L

(
l∑

i=1

Ki

)
, L(1+ X←

n,l) = L

(
n+1−l∑
i=1

Ki

)
,

with K1,K2, . . . independent andKi ∼ Ber(1/i). SinceXn,l = X←
n,l + X→

n,l , this
leads to another proof of (AD).

A glance at Figure 3 explains the “distributional coincidence”: 1+ X→
n,l is

the number of ascending records in the subpermutation of thel elements that
are less than or equal tol, 1 + X←

n,l is the number of descending records in the
subpermutation of then + 1 − l elements that are greater than or equal tol. This
leads to a very simple description of the node depth distribution in the extreme
cases,

L(1+ Xn,1) = L(1+ Xn,n) = L

(
n∑

i=1

Ki

)
,

since for the minimum and maximum all steps are in one direction only. Note,
however, that despite the independence of the subpermutations of the elements that
arestrictly smaller, respectively larger, thanl, X←

n,l andX→
n,l arenot independent.
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FIG. 3. The scatterplot for the permutation in Table1 (•: records in the subpermutations).

Indeed, sinceL(X→
n,l) = L(Xl,l) andL(X←

n,l) = L(Xn+1−l,1), it is tempting to
think of Xn,l as the sum ofXl,l andXn+1−l,1, but the simplest nontrivial case
already provides a counterexample to the assumption that these can be taken to be
independent:L(X3,2) = unif({0,1,2}), L(X2,1) = L(X2,2) = unif({0,1}).
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