MATCHMAKING AND TESTING FOR EXPONENTIALITY
IN THE M/G/cc QUEUE

RUDOLF GRUBEL AND HENDRIK WEGENER

ABSTRACT. Customers arrive sequentially at times 1 < xz2 < -+ < zp, and
stay for independent random times Z1,...,Z, > 0. The Z-variables all have
the same distribution Q. We are interested in situations where the data are
incomplete in the sense that only the order statistics associated with the de-
parture times z; + Z; are known, or that the only available information is
the order in which the customers arrive and depart. In the former case we
explore possibilities for the reconstruction of the correct matching of arrival
and departure times. In the latter case we propose a test for exponentiality.

1. INTRODUCTION

In order to explain the problems discussed in the present paper we consider the
years of birth and death of the composers J.S. Bach (1685-1750), Haydn (1732-
1809), Mozart (1756-1791), Beethoven (1770-1827), Schubert (1797-1828), Brahms
(1833-1897) and Tchaikovsky (1840-1893). The upper part of Figure 1 on the next
page shows these on two time axes, for birth and death respectively; the con-
necting lines indicate the correct matching, i.e. the true year of death associated
with any particular year of birth. Suppose now that the correct matching is not
known and that we only have the order statistics associated with the birth times
and times of death, and that the lifetime distribution @ is known. Can we recon-
struct the matching? Or, suppose that only the order of arrivals and departures
is known, and that @ is not known. In our running example this would lead to
(1,2,1,3,4,3,5,2,4,5,6,7,7,6), where the first occurrence of a number signifies
birth, the second death. Is there still some information about @ in this severely
reduced data set?

The first type of data loss typically appears whenever the number of ‘customers’
in a ‘system’ is recorded, where the meaning of these words depends on the re-
spective application. For our running example this is illustrated by the lower part
of Figure 1, where the number of composers alive at time ¢ is given as a function
of t: Knowing the function is obviously equivalent to knowing the ordered arrival
and departure data. If arrivals occur at the time instances of a Poisson process
with constant rate then we obtain an initial path segment of a queue of the type
M/G/oo in D. G. Kendall’s notation.

Formally, we have arrival times x; < x3 < --- < x,, which we first regard as
fixed. At each of these instances a delay period (or lifetime or service time) begins;
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F1GUurE 1. Composer data

we assume that these are non-negative, independent, and identically distributed
random variables Z7,...,Z,. We call the distribution @ of the Z-variables the
delay distribution and generally assume that it has a density f with respect to
Lebesgue measure. Let Y; = z; + Z;, 1 < i < n, be the departure times (or times
of death etc.) and let Y3,...,Y,, be the increasing order statistics associated with
Yi,...,Y,. With probability 1 there exists a unique random permutation II in the
set S, of all permutations of {1,...,n} such that ¥; = Ym,, 1 < i < n. Further,
Vi=#{1<j<i: ffj > x;} denotes the number of customers that are in the
system at the time of arrival of the ith customer, 1 <i < n.

In Section 2 we consider the problem of predicting or approximating the value
of II on the basis of x = (z1,...,2,) and Y = (Y1,...,Y,), where we regard @ as
known. We deal with maximum a posteriori and minimum distance reconstruction.
In Section 3 we introduce and discuss a test for the hypothesis that @ is an ex-
ponential distribution, now on the basis of the data (m,v), where 7 = (71,...,7,)
is the value of the matching II, and v = (vy,...,v,) is the value of the random
vector V = (V4,...,V,). In Section 4 we examine the asymptotic behaviour of our
procedures in the case of Poisson process arrivals.

The situation considered in the present paper is similar to the broken sample
problem introduced in [10], where a sample (X1,Y7),...,(X,,Y,) from a distribu-
tion on R x R is reduced to the respective multisets of the X- and Y-values; see
also [11] and [3]. In [10] it is assumed that the distribution has a density f that can
be written as f(z,y) = a(x)B(y) exp(y(x)d(y)) with suitable functions «, 3,7, §; in
view of our general assumption x < y this is not possible for delay data. In [11] and
[3] related statistical questions are investigated, such as the possibility of consistent
estimation of the correlation coefficient for bivariate normal distributions. In the
delay situation, estimation of ) on the basis of the ordered arrival and departure
data has been considered in the M/G /oo context in [7] and [13], see also the refer-
ences given there. The problem that originally motivated the present investigation
comes from insurance mathematics: In the context of multivariate risk theory the
class of models introduced in [5] incorporates dependence between the components
by assuming that original events may trigger later claims in different business lines.
The associated ruin functions then depend on the delay times. Finally, from a very
general point of view the framework considered here is somewhat similar to the
situation with ‘decompounding’, see [8], in the sense that an inverse problem arises
that may be of interest in its own right.
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In addition to the model variables defined above the following notation will be
used. We write £(X) for the distribution of a random variable X, occasionally
abbreviating £(X) = @ to X ~ Q. We assume throughout the paper that the
delay distribution @ has a density f that is strictly positive on the whole of R ;. In
our results we further assume that f is log-convex or log-concave. In order to have
a compact notation we write P, and P for the class of distributions with log-
convex and log-concave densities respectively, and Py, and Py, if these are strictly
log-convex or strictly log-concave. These families are often used in the economics
literature ([1], [2]) but also appear in reliability theory ([4, p. 75ff]). Two prominent
examples, especially in connection with lifetimes and service times, are the Weibull
and the gamma distributions, with densities

(1) fw(z) = fw(zlB,n) = B2~ exp(—(n2)?), 2z >0,
and
() fo(2) = fo(18m) = ﬁnﬁzﬁ’lexp(—nd’ 250,

respectively. It is known (and easy to check) that these are strictly log-concave if
B > 1 and strictly log-convex if § < 1. With § = 1 we obtain the exponential
distribution Exp(7n) in the Weibull as well as in the gamma case; indeed, in the
above notation, Pjey N Piee = {Exp(n) : n > 0}. For further examples of log-convex
and log-concave distributions, and of distributions that are neither, we refer the
reader to [2].

2. MATCHMAKING

In this section we regard z as fixed (and known), our data consist of a realization
y of Y, and we are interested in the (unknown) value 7 of the matching IT. As the
Z-variables are assumed to be strictly positive 7 must be an element of the set

Sy = Sy (z,y) = {WGSni Yu, > T forizl,...,n}

n

of permissible permutations. We use m = (m1,...,7,) as a notation for the permu-
tation 7 — m; and we recall that the elements of S,, can be coded by the relative
ranks of these values,

(3) D:S, o> x{l,...,i}, Om)=#{1<j<i:m<m}
i=1
In view of the support assumption on @ all elements of the set S; appear with
positive probability. It is easy to see that
(4) Vi=i—1—-#{1<j<n:Y; <z},

which means that V is a function of z and Y’; in particular, we know its value
v = (v1,...,0,). At the time of the ith arrival i — 1 — v; departures have already
taken place, so the range of values for the relative rank of the ith departure time
within the departures associated with the earlier arrivals is the set {i —v;,... i},
and we can define a bijective mapping

(5) v W, = ‘;l{i—vi,...,i} - S,

by the requirement that ¥=! = ® on S¢ with ® as in (3). Obviously,
U(1,2,...,n) =id = (1,2,...,n) € S°,
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which is the permissible permutation where customers depart in the order of their
arrival. Also, as a consequence of the existence of a bijective mapping, the number
of permissible permutations is a simple function of the vector v = (v1,...,v,),
n
#Sp = (1 +vi).
i=1
The joint distribution of Y and II has density
n
g(yh sy Yn, T, 77T1'L) = Hf(yﬂ'L - xz)
i=1
fory; <wy2 <--- <y, and w € S;, where the density is with respect to the product
of the n-dimensional Lebesgue measure on R™ and the counting measure on S,,.
Regarding the conditional density of II given Y = y as a function of m we call
T € S, a mazimum a posteriori (MAP) reconstruction or prediction (or perhaps
retrodiction) of the value 7 of II if it maximizes this function, or equivalently

(6) m = Y log f(yr, — i)
1=1

on S°. By design, I := #(Y) maximizes the probability that the unknown matching
IT is equal to IT among all functions of the data Y. Our first result gives these
maximizers for the classes of distributions introduced at the end of Section 1.

Theorem 2.1. (a) If Q = Exp(n) then all elements of S are MAP predictors.
(b) If Q@ € Piec then @ = id is an MAP predictor; if Q € Py, then the MAP

predictor is unique.
(¢) If Q € Piey then an MAP predictor is given recursively by
i, = min{j : y; >z, },
fri:min{j:yj>:ci,j§£{frk: k>i}}, 1<i<n.
Moreover, if Q € Py, then the MAP predictor is unique.

Proof. For exponential distributions we obtain

n n
> 108 f(yr, — x:) = nlogn—n> (Yx, — i)
i=1 i=1
n n
= nlogn—n (Zyz - Z%)
i=1 i=1
which does not depend on .

For the proofs of the remaining parts we need some properties of S7. The set W,
defined in (5) carries a canonical digraph structure, with a pair (w,w) of elements
of W,, being a directed edge if and only if there is a j € {1,...,n} such that

1 i
. - fern i

w;, otherwise.
There are no loops, the vector w = (1,2,...,n) is at the top, and w = (1,2 —
Vg,...,n — vy,) is at the bottom. The digraph is connected in the sense that, for

each w € W,,, there is path connecting the bottom to w and a path connecting w
to the top. The mapping ¥ transports this structure to S¢, if we take (7,7) to be
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an edge in S? if and only if (w,w) is an edge in W,,, with 7 = ¥(w), 7 = ¥(w). It
is easy to check that the transition from w to @ in (7) corresponds to the removal
of an inversion in 7 = ¥(w): Position j is swapped with position i < j, where
customer ¢ is the first to leave after customer j (we have w; < j, so this set is not
empty).

The properties that we need can now be formulated as follows: First, if (7, 7) is
a directed edge then 7 arises from 7 by a transposition that removes an inversion;
second, S? is connected in the sense that any permissible permutation 7 can be
transformed into ¥(w) or ¥(w) by a finite number of transpositions without leaving
S¢, i.e. with all intermediate results being permissible. The algorithm in part (c)
is easily seen to provide the bottom ¥(w) of S2.

Now suppose that f is log-concave and that (7, 7) is an edge in S, so that
7 =mor(i,j) €SS for some transposition 7(4,5). We may assume that i < j, and
then 7; > m;. From the fact that 7,7 € S} we obtain that z; < z; < yr;, < Yr,; in
particular, a := x; — x;, b := Yy, — z; and ¢ := yp, — yr, are all positive. We need
to maximize the function A : S — R,

h(m) = _log f(yr, — z1),
k=1
and we obtain
h(m) = (%) = log(f(yr;, — %)) + log(f(yx; — 7;))
— log(f (Yn; — i) = log(f (yr; — 7;))
= log(f(a+0b+c)) +log(f(b))
— log(f(a+ b)) —log(f(b+ c)).

For log f concave this is easily seen to be < 0, in the case of strict concavity it is
even strictly negative (see also Lemma 1 in [1]). This means that by removing an
inversion we (strictly) increase the value of h; in view of the structure of S this
implies both statements in (b).

For log f (strictly) convex the difference is (strictly) positive, hence we obtain
the (unique) MAP in the situation (¢) by moving to the bottom, which again is
possible without leaving S . O

(8)

Remark 2.2. (a) The algorithm in part (c¢) of Theorem 2.1 assigns to each arrival
the earliest possible departure, working backwards from the latest arrival, whereas
with the solution # = id in part (b) departures are delayed as long as possible. Note
that the MAP does not depend on the data in the log-concave case; for log-convex
densities it depends on the data y only via the set S2 of permissible distributions.

(b) For other popular distributions that are neither log-convex nor log-concave,
such as the lognormal distribution, we do not have explicit expressions for the MAP
predictor(s) 7. Algorithmically, the maximization of the function in (6) can be seen
as an instance of the assignment problem, see e.g. [14], which can be solved with
complexity O(n?), hence we can still find the solutions in a reasonable amount of
time if n is not too large. This is an improvement over the naive approach of work-
ing through the whole of S; element by element, as this set may be quite large even
for moderate values of n. <

It should be clear that a reconstruction in the sense of P(II = II) being large
is somewhat unrealistic in all but extreme cases (such as, in queueing terminology,
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cases with a very low traffic intensity). Instead, we could aim for a prediction that
is close to the true value in the mean. This requires some loss function, which in
turn could be based on a notion of distance. Formally, we have a metric d on S,
and we call a function ¢ of the data y a minimum mean distance (MMD) predictor
with respect to d, if ¢ minimizes Ed(II, ¢(Y)) among all measurable functions
¢ : R™ — S,,. If the transition kernel K (y,-) is a version of L(II|Y = y) then we
obtain an MMD predictor by minimizing 7+ [ d(m, o) K(y,do) for the individual
y-values. Of course, MAP prediction for discrete random variables can also be seen
as minimizing an expected distance, if we let the distance of 7 and o be 1 if 7w # o,
and 0 otherwise (the discrete metric). There are obvious analogies with concepts
from frequentist and Bayesian statistics; indeed, what we call MAP prediction
occasionally appears as ‘maximum likelihood prediction’ in the literature.

Our basic reference for distances of permutations and their statistical relevance
is [12]. We now consider minimum mean distance prediction of II if we measure
distance by M.G. Kendall’s 7. The standard definition of d, (7, o) is as the minimum
number of transpositions 7(4,7 + 1), 1 < i < n, of direct neighbours required to
turn 7! into o~!. There are various other, equivalent, definitions; for us, it will
be convenient to use

n—1 n
9) d-(o,m)=> > Dy
i=1 j=i+1

with

1, if (O’i — O'j)(ﬂ'i —’ﬂ'j) <0,

(10) " a(oym) {O, otherwise.

Here D; j(o, m) indicates whether or not m and ¢ assign different order to the values
i and j. In particular, with the bijection ¥ in (3) and (5), we have

n

(11) d-(id,7)=> (i—w;) if7=U(w,... w).

i=1

Note that the Cayley distance arises if instead of neighbour transpositions we allow
all transpositions 7(i, ), 1 <i < j < n. Apart from being more detailed in a sense,
Kendall’s 7 also seems to us to be more appropriate in the present context as the
delay problem makes use of the ordering of the set on which the permutations work
via the ordering in time of the events in question.

Stated somewhat informally, the proof of Theorem 2.1 shows that, for log-concave
densities, undoing an inversion increases the a posteriori probability, and that we
obtain a decrease in the log-convex case. For the first of these it turns out that the
MAP predictor is also the MMD predictor; for the corresponding statement in the
log-convex case we need an additional assumption. Note that, with S, = S,,, the
permutation in part (b) is the same as the permutation defined in Theorem 2.1 (c).

Theorem 2.3. (a) If Q € Pic then ¢(Y) = id is an MMD predictor for I with
respect to Kendall’s T-distance. If Q € Py then the MMD predictor is unique.

(b) Suppose that S% = S,,. If Q € Picy, then ¢(Y) = & with #; = n—1i+ 1 for
i =1,...,n is an MMD predictor for 11 with respect to Kendall’s T-distance. If
Q € P, then the MMD predictor is unique.
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Proof. (a) Let K(y,-) be the conditional distribution of IT given ¥ = y. The
computation in (8) shows that for log-concave densities, and with
Bij={reS,:m>m}, 1<i<j<n,

we have that

(12) {mor(i,j): m€ Bi; NS} C Bi; NS,
as well as
(13) K(y,{mo7(i,j)}) > K(y,{n}) forallme B;;NS;.

In particular,
(14) K(y,{m:m >mn;}) < K(y,{m: m <m;}) foralli,jwithl <i<j<mn,

as m— mo7(i,j) maps B; ;j NS5 one-to-one onto a subset of {w € S, : m; < m;}.
We now use the representation given by (9) and (10). Clearly, for any o € S¢,
and again with 1 <i < j <n,

B e = (T S

which reduces to K (Y, {II; > II;}) if o = id. With (14) this leads to

(15)  ED;;(0,10) = E(E[D;;(0,I)|Y]) = E(E[D;;(id, I)|Y]) = ED;,;(id, II)
so that

n—1 n n—1 n
Ed-(o,11) = Y > EDij(c;T) > > Y ED;;(id,1) = Ed.(id,TI).
i=1 j=i+1 i=1 j=i+1

Again, for strictly log-concave densities, the inequality will be strict.

(b) In the log-convex case, the inequality in (13) is reversed, and the additional
assumption SO = S,, implies that we have equality in (12). Replacing o = id by
o = 7 we can now proceed as in the proof of the first part of the theorem. ([l

Remark 2.4. (a) It follows from the first part of the proof of Theorem 2.1 that
for exponential delay distributions the conditional distribution of II given Y is the
discrete uniform distribution on the set of permissible permutations; we abbreviate
this to

(16) LY) = unif(S;).

Indeed, as we regard arrival times as fixed, S; is a function of Y. Moreover,
the distribution of the distance between the predictor that is best in the sense of
Theorem 2.3 (a) and the true matching can then be written as a convolution of
uniform distributions,

(17) L(d,(id, I)|Y) = 21 wnif ({0,...,V;}),
where V; again denotes the number of customers that are in the system at the time
of the ith arrival. To see this, we use (11) and (16), and we note that uniformity

on SY implies uniformity on the domain of the bijective function ¥ in (5). In
particular,

(18)  Eld.(id,)|Y] = %Z‘/i, var[d,(id, IT) [Y] = % ZVi(Vi +2).
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This will be taken up in Section 4.

(b) In the exponential case we cannot expect uniqueness if S = S,, as the dis-
tance is right invariant in the sense that d(w, o) = d,(mov,oov) for all m,o,v € S,,.
Even if SY # S,, the minimizer may not be unique: For example, in the case n = 3
and 21 < 2 < y1 < w3 < Y2 < ys we have S§ = {id,(1,3,2),(2,1,3),(3,1,2)}
and some straightforward computations show that for o = id and o = (2,1, 3) the
distance d,(o,II) to II ~ unif(S5) has a binomial distribution with parameters 2
and 1/2; for the other two permutations the distance is uniformly distributed on
{0,1,2,3}. Hence there are two permutations that minimize o — E[d,(c,II)|S§].
Also, for exponential delay distributions, choosing a permutation at random will
provide an optimal reconstruction from the MAP point of view. With MMD this
is no longer the case: With S5 as above, and X and II independent and uni-
formly distributed on S§, we obtain the expected distances Ed,(id,II) = 1 and
Ed. (X,1I) =5/4.

(c) For the data x = (1,2,4), y = (3,5,6), and with @ the gamma distribution
with parameters 8 = 1/2 and n = 1, we obtain the MMD predictor 7 = (2,1, 3),
whereas the permutation # defined in Theorem 2.1 (c) is given by & = (3,1,2).
Hence, in contrast to the MAP situation, this 7 will not in general be the MMD
predictor in the log-convex case — an additional assumption on the structure of S9
such as in Theorem 2.3 (b) is needed.

(d) In analogy to the MAP case the question arises how an MMD predictor could
be obtained if the lifetime distribution is not of the type considered in Theorem 2.3.
We define a matrix A and a vector b, both indexed by the permissible permutations,
by

A= (a(7r,o’))7r peser With a(m,o0) :=d;(m,0) foral m,0 €S8,

and
b= (br)rese, with by := Hfz(ym — ;) forall T €S,
i=1

respectively. Finding the MMD for a particular y then amounts to finding a com-
ponent of the vector Ab that has minimal value. We are not aware of a general
algorithmic simplification in the style of Remark 2.2(b), but the distance mini-
mization can be carried out separately for the busy periods; see also the proof of
Theorem 4.2 below. <

3. A TEST OF EXPONENTIALITY

We now turn to the situation where the original data are reduced to the order of
arrivals and departures. Equivalently, we observe the value 7 of the true matching
IT and the value v of the random vector V' = (V4,...,V,,) where again V; denotes
the number of customers that are in the system at the time of arrival of the ith
customer. If the delay times have a log-concave density then we know from the
proof of Theorem 2.1 that the conditional density of Il given Y decreases if the
number of inversions increases, it increases in the log-convex case. This motivates
the use of d(id, 7) as a test statistic for testing exponentiality against log-convex or
log-concave alternatives. In the queueing context such procedures test for M/M/oo
within M/G/occ.
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For a formal definition let o € (0,1) be given and let ¢4 : S, x N — [0,1] be
defined by

1, if d.(id, m) > c4 (),
(19) b1 (m0) = @), i drid,m) = 4 (a),
0, if d,(id, m) < cy (),

where ¢4 () is the upper a-quantile associated with Qo := L£(d,(id,II)), II ~
unif (S2), and v4(a) € [0,1) is such that

(20) Qo ((c+(a),00)) +74(a) Qo({ex(a)}) = o

Similarly, we define another test function ¢_ by

1, if d-(id, ) < c_(a),
(21) o_(m,v) = S v_(a), ifd.(id,7) =c_(a),
0, if d-(id, m) > c_(a),

where c¢_ () is now the lower a-quantile of Q¢ and v_(«) is such that

Qo([0,c—(a))) +7-(a) Qo({c_(a)}) = a

In both cases, the variable v enters the test via S ; see (5). We point out that
the critical values do not depend on 7, which is a consequence of the fact that
for exponential delay distributions the conditional distribution of IT and hence of
d,(id, II) does not depend on this parameter; see (16). In fact, this distribution is
a convolution of discrete uniform distributions, which makes it easy to obtain the
critical values. For n small this can be done via Fourier transforms, together with
the fast Fourier transform (FFT) algorithm. For moderate or large n and v;’s the
normal approximation gives satisfying results; see also Section 4.

Our next theorem collects some properties of these tests. Statements (22)
and (24) imply that both are unbiased and that they are similar on the ‘boundary’
Piev N Prec = {Exp(n) : n > 0}, see [15, Chapter 4.3]. Statements (23) and (25) can
be regarded as strong unbiasedness ‘inside’ the hypothesis resp. alternative.

(QvAa PQ)

d(id, ) order
No S,

FIGURE 2. General structure of the model variables

The random variables that appear in our model are all defined on some measur-
able space (£2,.4). We write Py for the probability measure on (£2,.4) under which
the lifetimes are independent and have distribution @), Fg denotes expectation with
respect to FPp.
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Theorem 3.1. (a) With ¢4 as in (19),

=a, 1if Q=Exp(n) for somen >0,
(22) Egle+(ILV)IV] S <a, if Q€ Prec,
>, Zf Q € Prev,

and

(23) B¢ (V) {““’ T e

>a, if QeP,.
(b) Similarly, with ¢_ as in (21)

=a«, if Q=Exp(n) for somen >0,
>a, if Q€ Pice

and

(25) Eqo_(ILV) {“’ I Q€ Phey,

>oa, if Q€Pp..

Proof. Let o € (0,1) be given. The various random quantities are summarized in
Figure 2, where ‘order’ and ‘sort’ are canonically defined (see e.g. their use in the
statistical language R), and ¢ = (¢1,...,%,) is given by

¢i(y1a"'7yn) = 2_1_#{1 SJ <n: yj <mi}a
see also (4).
We abbreviate Py, Eq to P, E, if Q = Exp(n). Remark 2.4 (a) and (20) lead to
E, ¢+ (ILV)|V] = a for all n > 0.
Integrating out the variable V' we see that the tests have the exact rejection prob-
ability o on {Exp(n) : n > 0}.
For the proof of the other assertions we first consider the conditional distribution

of d,(id,II) given Y. The structural considerations at the beginning of Section 2
imply that this distribution has support {0, 1, ..., knax} with

kmax = kmax(y) = sz(y) = ZV;
i=1 i=1

Further, the argument in the proof of Theorem 2.1 can be used to show that
Po(d-(id,TT) = k|Y)

P(d-(id, 1) = k|Y)

is strictly decreasing on {0,1,...,kmax} if @ € P2, provided that Y is such that
kmax(Y) > 0. An elementary argument (based, for example, on the proof of a

comparison result for likelihood ratio and stochastic order given in [16, p. 12]) shows
that this implies that, again for Q € P2,

(26) Po(d,(id,IT) > k|Y) < P,(d-(id,1I) > k|Y')

k —

for k = 1,..., kmax. Further, in (26) we may condition on V instead of Y in view
of the fact that V is a function of Y (integrating over {y : ¥(y) = v} leads to the
conditional probability given V = v).
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The strict stochastic ordering of the distributions of the test statistics in turn
leads to a corresponding strict lexicographic ordering of the pairs (c4 (), v+ ())
derived from the distribution of d,(id,II) under Py and P,, hence

Eglo+ (L V)|V =v] < a forall Q € Py, v#0,
Eglo—(IL V)|V =v] > a forall Q € Py, v#0.

Here we have written 0 for the n-vector with all components equal to 0. Note that
v # 0 is equivalent to #S;, > 1. Asthe Y -variables can take arbitrarily large values,
we always have Po(V =0) < 1.

Putting this together we see that for Q € Py, the rejection probability of the
test ¢ is strictly smaller than the preassigned level, and that it is strictly greater
for ¢_. This proves the upper part of (23) and the lower part of (25). A similar
argument, with P? instead of Py, provides the respective other parts.

Removing the qualifier ‘strong’ in the above arguments, which corresponds to the
transition from Py, to P, or from Py to Picc, we obtain inequalities instead of
strict inequalities, and this leads to the remaining statements in (22) and (24). O

The conditioning on V' means that the tests are invariant under scaling in the
sense that the decision will not change if we multiply the arrival and departure data
by a fixed positive constant.

The above procedures can easily be adapted to the two-sided case, i.e. for testing
@ = Exp(n) for some n > 0 against Q € P, UPL..

4. ASYMPTOTICS

In the previous sections we had a fixed finite sample size n and the arrival times
were also regarded as fixed. We now investigate the asymptotic behaviour of the
procedures under the assumption that arrivals occur at the points of a Poisson
process with constant rate A. This is, roughly, the M/G/oo queueing model men-
tioned in the introduction, but we ‘close admittance’ after the arrival of the nth
customer. Formally, we have a sequence X = (X;);en of arrival times, with X; =0
and X;11 — X;, ¢ € N, independent random variables, with distribution Exp()).
Further, Y; = X, 4+ Z; where Z;, i € N, are independent, and all Z;’s have dis-
tribution Q. The sequences X and (Z;);en are also assumed to be independent.
Let Y = (Yn,i)nen,i=1,...n be such that Y,, 1,...,Y, , are the order statistics for
Yi,...,Y, (we need a second index here as later arrivals may depart earlier than
previous ones, see the cases of Mozart and Tchaikovsky in our running example).
Again, let

(27) Vii=i—1-#{1<j<i:Y; <X}

be the number of customers in the system at the time of the ith arrival (it is easy
to see that we do not need a second index for the V-variables; the right hand side
of (27) does not change if Y; ; is replaced by Y,, ; with an arbitrary n > ). Finally,
let II,, be the correct matching for the first n arrivals and departures. Our first
limit result is conditional on the sequence X and the triangular array Y.
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Theorem 4.1. Suppose that Q@ = Exp(n) and put p = A/n, Then, with probability
1 asn— o0,

1
= Bld, (id,11,,)|X, Y] — 2,
n 2

% varld, (id, TT,)) [ X, Y] — @,

L (dr(lda Hn) — E[d‘r(lda Hn)|X7 Y

]
X,Y) —aiee N(0,1).
var(d, (id, IL,,) | X, Y] /2 V) Zaisa N(0,1)

Proof. We need the stochastic dynamics of the sequence V' = (V;);en as given
in [17, Chapter 2.2]: V is an irreducible and aperiodic Markov chain with stationary
distribution m = Po(p), and the moments EV}, | € N, converge to the corresponding
moments of Po(p), where we have written Po(p) for the Poisson distribution with
mean p.

By the ergodic theorem for Markov chains, see Theorem 2 in [9, Section 1.15],
we then have that, with probability 1,

) 1 n o .
S Ve = 2 gm = o
i=1 =0
1 n o0
3 — . R — (g S 2
(28) Jim L3 = 32 =
1= j=
1 n o0
. - ‘4 _ 4
(29) nh_}n;onX;VZ z;)] m; < 00.
i= Jj=

Using this together with (18) we obtain the first two statements of the theorem. For
the distributional limit we start with (17), which in the current notation becomes

L(d,(id,I1,)| X, Y) = glunif({o,...,m).

By the Lyapunov condition for the Central Limit Theorem, see e.g. [6, Section 27],
it is now enough to show that
Z?:l ‘/i4

lim =

" (f Ty ViV +2))°

with probability 1. From (29) we obtain that the numerator is O(n) with proba-
bility 1, for the denominator we use (28). O

We now consider the asymptotic behaviour of the tests in Section 3 in the above
model. Let o € (0,1) be fixed. We write ¢, 4+ and ¢,, _ for the level-o tests based
on the first n arrivals and departures. The following result shows that these tests
are consistent ‘inside’ their respective hypothesis and alternative.

Theorem 4.2. (a) If Q € P then
lim Eg ¢, +(I,V) =0 and lim Eg¢,_(ILV) = 1.
n—oo

n—oo
(b) If @ € P, then
lim Egén_(ILV) =0 and lim Bgén(ILV) = 1.
n— oo

n— oo
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Proof. For general @ the sequence (V;);en will no longer be a Markov chain, but it
still has a regenerative property in the sense that, with vy := 1 and

Vgy1 = inf{i > v : V; =0} forall k €N,
the blocks (Wg)ken,
Wy = (Vqu ) VVk—1+17 (R VVk—l)

are independent and identically distributed. This is a consequence of the decom-
position of M/G/oo queues into busy and idle periods; in particular,

Py < oo forall ke N) = 1.

The blocks induce a decomposition of the set of permissible permutations (in our
running example we have chosen the composers to demonstrate this: Obviously, for
7 to be permissible, we need 7({1,2,3,4,5}) = {1,2,3,4,5} and 7({6,7}) = {6,7}).
Consequently, if n = v — 1 for some k € N then any 7 € S;, can be written as

7r:7rk_lo7rk_20---07r17

where 7! permutes the integers v;_1,1,_1 4+ 1,..., — 1 only. This in turn leads to
an additive decomposition of the 7-distance,

k—1
d.(id,7) = ) d,(id, 7).
1

~

Conditionally on V' we thus obtain a representation of the test statistics,

k—1
d-(id, T, 1) = > _ &,
=1

where the &’s are independent and identically distributed. By the law of large
numbers we therefore have, conditionally on V',

lim idT(id,H,,k) = Egl&i|V] = x(Q) with probability 1.

k—o0 Vp,
The strict stochastic order of the distance distributions that we used in the proof
of Theorem 3.1 implies that x(Q) < x(Exp(n)) whenever @ € Pf,.. In connection
with the conditional asymptotic normality in Theorem 4.1 this means that the
conditional probability that ¢,, + rejects will tend to 0 as k — oo, and that the
conditional probability that ¢,, _ rejects will tend to 1 as £k — oo, both with
probability 1.

In order to be able to uncondition, i.e. to integrate out the sequence V', we

need to pass from the sequence (vj)reny of random times to the full deterministic
sequence 1,2, .... This, however, is straightforward, using

dT(id7HVk—l) S d‘r(lda Hn) S dT(id7HVk+1—1)

on vy —1 <mn < vy — 1, and the fact that vi11/v, — 1 with probability 1 as
k — oo.

Taken together this proves (a). The arguments for the second part are similar.

O
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Specialized to the parametric situations in (1) and (2) the theorem gives

0, pB>1,
lim Ej,6:+(ILV) = §a, =1,
1, B<1,

and a similar statement holds for ¢_.
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