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We obtain bounds for the distribution of the number of comparisons needed
by Hoare’s randomized selection algorithm FIND and give a new proof for Griibel
and Rosler’s (1996) result on the convergence of this distribution. Our approch
is based on the construction and analysis of a suitable associated Markov chain.
Some numerical results for the quantiles of the limit distributions are included,
leading for example to the statement that, for a set S with n elements and n
large, FIND will need with probability 0.9 about 4.72-n comparisons to find the
median of S.
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1. Introduction. Hoare’s (1961) selection algorithm FIND finds the I*" smallest
of aset S C R with n elements, 1 <[ < n. The variant to be discussed here proceeds
as follows: If n = 1 the algorithm returns the only element of S. If n > 1, an element
z is chosen uniformly at random from S, and the sets S_ = {y € S :y < z} and
Sy ={y € S:y >z} are determined, requiring n — 1 comparisons. Let m = |S_|
be the size of the set of smaller elements. If m > [ then continue with FIND(S_, ).
If m =1 —1 then return z. If m < I — 1 then continue with FIND(S;,l — m — 1).
Obviously, the set S is reduced by at least one element in each recursion step and
the algorithm thus terminates after at most n — 1 recursions.

Interest is in the total number C,, ; of comparisons needed as this number essen-
tially determines the time required by the algorithm. Devroye (1984) gave upper
bounds for P(C),; > nz) which hold uniformly in n and ! and decrease exponen-
tially in 2. In Griibel and Résler (1996), to which paper we also refer for related
material and a more detailed discussion of the background, it was proved that
Ch.1,, /1 converges in distribution as n — oo if lim,, o In/n =t € [0, 1].

We will give a considerably simpler proof of this result. In Griibel and Rosler
(1996) the random variables Cp,;, 1 <1 < n, for a slightly different version of the
algorithm were considered simultaneously, and it was shown that the stochastic
processes (Cy, rn41/M)o<t<1 converge in distribution as n — oo. Our new proof
starts with the observation that the pairs (S,1) arising in the successive recursion
steps constitute a Markov chain. For the counting of comparisons we may reduce
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the state space of this chain to the pair (i,1), where 7 is the size of S; this does not
destroy the Markov property. Indeed, if (i,1) is the current state, then the next
state will be selected uniformly at random from the set

{0 U{Gi—kl=k) k=1, -1} U{(i—kD):k=1,... i1},

irrespective of the previous history of the process. If n,i1,42,...,1,1,1... is the
sequence of first components of the successive states of the chain then C),; is
the sum of the values n — 1,47 — 1,45 — 1,...,0,0,0.... The basic idea of the

proof is that, after proper normalization, the sequence of chains arising as n — oo
converges to a continuous state space Markov chain; see Figure 1 below. To show
that this convergence entails the convergence of C,;, /n we use a suitable almost
sure construction that allows for a pathwise analysis.

This approach also leads to new results. One of these closes a ‘conceptual gap’ in
Griibel and Rosler (1996): it was shown there that the tails of the limit distribution
decrease at a faster than exponential rate. This does not permit a direct compari-
son with Devroye’s (1984) exponential bounds, however, as the latter refer to the
distribution of C,, ;/n for finite n. Theorem 1 below shows that the stochastic upper
bound derived in Griibel and Résler (1996) for the limit distribution in fact applies
to the distribution of Cp;/n too, for all n € N and all [ € {1,...,n}. This seems
to be of some interest, firstly because a recent result of Goldie and Griibel (1996)
can be applied to obtain the exact logarithmic rate of decrease of the tail proba-
bilities of the upper bound (which is —zlog z), and secondly because the bound is
tight in a sense which will be made precise below. Also, via the stochastic upper
bound, we obtain a simple and explicit, non-asymptotic numerical upper bound for
P(Cp; > nz) in Theorem 2.

Theorem 3 is the convergence result mentioned above; a stochastic lower bound
for the limit distributions (which depend on the limit of I, /n) is given in Theorem
4. In Theorem 5 these limit distributions are related to each other.

We write £(X) for the distribution (‘law’) of a random quantity X and £(X|Y")
for the conditional distribution of X given Y. The symbol ‘— 4.’ denotes con-
vergence in distribution. Also, X <y« Y for nonnegative random variables X,Y
indicates that X is smaller than or equal to Y in stochastic order, i.e. P(X >
z) < P(Y > z) for all z > 0. With both ‘= 4.’ and ‘<4, we will occasionally
follow the common sloppy practice of mixing random variables and distributions
when notationally convenient. We write x for convolution, é. for the unit mass in
¢ € Ry and 14 for the indicator function of the set A. Finally, X ~ unif(a,b) ab-
breviates the statement that X is a real-valued random variable which is uniformly
distributed on the interval (a,b).

2. Main results. A discrete time Markov chain can be regarded as a collection
of stochastic processes indexed by an initial state. The distributional aspects of this
collection are completely specified by the state space I and the transition kernel P
of the Markov chain.

Let I := {(z,y) € R} : 0 <y <z} and for each (z,y) € I let P((z,y), -) be the
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distribution of &,

¢ = (x —Ux,y—Uz), if Uz <y,
| (Uz,y), it Uz >y,

This defines a transition kernel P on I; let Z = (Zp)men, with Z,, = (X, Yin)
be a Markov chain with state space I and transition kernel P.

For each n € N let
I, = {(%%) Li,l €N, lgz‘},

and for each (i/n,l/n) € I, let P,((i/n,l/n), -) be the discrete uniform distribu-
tion on

(Gl { (55 =50) =t u{ (55 ) =it}

This defines a transition kernel on I,. Let Z(" = (Z,(??))mGNO with Z{" =
(X,(,f),Y,%n)) be a Markov chain with state space I,, and transition kernel P,,. Fig-
ure 1 illustrates the basic transition mechanism for the n-chain and its continuous
counterpart.

with U ~ unif(0, 1). (1)

+ 4+ + + + 0o + + + +
+ + + + o o + + 4+
+ + + o + o + +
+ + o + + o +
+ o + + + o
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+ + Tz, >y
[ ]
FIGURE 1 Transitions of Z™ and Z
o: current state; e, —: potential next states

The following relation provides the connection to the algorithm FIND, it displays
Cp, as a function of VAOR

o) - o(E(w-Dla-0d) o

This, together with a suitable construction of the Z(™-chains, leads to the following
uniform stochastic upper bound for C), ;. Proofs are collected in the next section.
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THEOREM 1 Let (Vi) men be a sequence of independent random wvariables with
distribution unif(1/2,1), and let W :=1+ 3 >_ TI"™,V,. Then

1
EC’n,z <agise W forallneN, le{l,...,n}.

The statement of the theorem can also be written as

sup P(Cpy >2) < PW >z) forall neN, z>0.
1<I<n

A similar statement with ‘the supremum inside P’, i.e. on the tails of sup; <;<,, Cni,
would involve the joint distribution of Cpi,...,Cpn. A brief discussion of this
problem is given in Section 4.3.

Sums over cumulative products of i.i.d. sequences, such as W in Theorem 1,
have been studied by various authors, see e.g. Goldie and Griibel (1996) and the
references given there. They appear in insurance mathematics where the above W
arises as the ‘perpetuity’ associated with unif(1/2,1). Goldie and Griibel (1996)
have recently investigated the tail behaviour of such perpetuities and obtained the
following result:

lim
z—00 zlogz

logP(W > z) = —1. (3)

This together with Theorem 1 implies that sup,,cn 1<i<, P(Cng > nz) decreases
with increasing z at a faster than exponential rate. Of course, for any finite n,
the support of the distribution of C, ;/n has a finite upper endpoint; this bound,
however, increases with n. A closer analysis of W results in the following non-
asymptotic bound.

THEOREM 2 Forall z>0,n €N and 1 <1 <n,

P(Cp > nz) < exp(z+ zlogd — zlog 2).

The same construction as for the proof of Theorem 1, now carried out simulta-
neously for all Z(™-chains and the process Z, shows that Z(™ converges to Z in a
sense sufficiently strong to allow for application of the functional appearing in (2).

THEOREM 3 Let (In)nen be a sequence of integers with 1 < l,, < n such that
ln/n converges to a limit t € [0,1] as n — co. Then, as n — oo,

1 [ee]
E C’mln —>distr E(’mz_o X’m ‘ ZO = (1:t))

Let Qu,y := E(anozo Xm|Zo = (x,y)) For us the distributions @, 0 < ¢ <
1, are of particular importance as they arise as the limits in Theorem 3. The
convergence in distribution implies Q1+ <giser W with W as in Theorem 1, see
also Theorem 9 in Griibel and Résler (1996). The next theorem gives a related
stochastic lower bound.



THEOREM 4 Let W' := 1+ > *°_ TI", U, where (Uy)ren is a sequence of
independent random variables with distribution unif(0,1). Then Q14 >giser W' for
all t € [0,1].

From the definition of Z it follows easily that Q19 = Q1,1 = L(W'), hence the
lower bound in Theorem 4 is tight. This lower bound is the perpetuity associated
with unif(0,1). The result of Goldie and Griibel (1996) can be applied to W'
too, and leads to the same tail behaviour, i.e. (3) also holds for W'. Hence the
stochastic interval obtained for the distributions ;. is small in the sense that
the tail behaviour of upper and lower bound coincide if measured on a logarithmic
scale; see also Section 4.2 below.

The Markov property of (Z,,)men, together with a scaling property of the asso-
ciated transition kernel can be used to obtain an integral equation that relates the
distributions @1, 0 < ¢ < 1, to each other. This in turn can be used to obtain
information on the limit distributions, numerically or otherwise. In order to make
this precise we need the functions T, : Ry — Ry, ¢ > 0, defined by T.(z) := cz.
Further let T.(Q) denote the image of the distribution @ on Ry under T, (if X is
a random variable with distribution @ then T.(Q) is the distribution of ¢X).

THEOREM 5 For all t € [0,1],

t 1
Q1) = /51*T1,U(Qlt__u)du + / 5% Tu(Q, ) du.
0 t

‘l1—u ‘u

The formula in Theorem 5 can be used to obtain integral equations for the
moments of the limit distributions, e.g. for m; (t) := [z Q1,+(dz) we get

mi(t) = 1 + /Ot(l—u)ml(i:—?t)du + /tluml(g)du

which is solved by my(t) = 2 — 2tlogt — 2(1 — ) log(1 — t) (see also Griibel and
Rosler (1996), Theorem 11). Paulsen (1995) recently solved the analogous inte-
gral equations for higher moments of ();; and in particular obtained an explicit
expression for the variance. In view of the bound in Theorem 1 the convergence in
Theorem 3 implies the existence and convergence of all moments, i.e.

: I k
Jm B(ach,) =[5 Quild) < o
for all kK € Nif I,/n — t. In Section 4 we will use Theorem 5 to derive an
integral equation for the distribution functions of @)1, 0 <t <1, and obtain some
numerical results for the associated quantiles.

3. Proofs. For Theorem 1 and Theorem 3 we use a suitable almost sure
construction.



Let (Up)men be a sequence of independent, unif(0, 1)-distributed random vari-
ables. We define (Z,,)men, with Zp, = (X, Ym) € I recursively by Zy := (1,t)
and

7 — (Xm - Um-l—le:Ym - Um+1Xm): if Um+1Xm S Yma (4)
m (Um+1Xm7Ym)a if Um+1Xm > Ym-

Obviously, (Zm)men, 18 a Markov chain with transition kernel P and start at
(1,t), i.e. we have used the sequence (Up,)men to construct a suitable version of
the prospective limit process.

We now use the same sequence to construct suitable processes (Z,(#) YmeNg; 1 € N.
To this end we need the auxiliary functions

hy, - {%;1§k§n}x[0,1)—>{§:1gk§n}, hn(%u) = %[iu].

Obviously, if U ~ unif(0,1) then h,(i/n,U) has the discrete uniform distribution
on {k/n: 1 <k < i}. We now define (Z,(#))mGNO, A (X,S?),Y,Sf)) eI,
recursively by Zén) :=(1,1,/n) and

(X5) = ¢V = Q) i <Y,

Z0 = 4 (1/n1/n), it ¢=v{",  with ¢:= hy(X3), Upia).
(€ = 1/n, VM), it ¢> v,

It is easy to see that (Z,(#))meNo is a Markov chain with transition kernel P, and
start at (1,1,/n). In view of (2) the statement of Theorem 3 will follow if we can
show that

o0

m=0

1 (e}
(n) _ =
(Xm n) — mE_O Xm almost surely as n — oo. (5)

The main tool for the proof of this will be a uniform upper bound on the ratios
of successive X-values. Let V,, := max{Uy,1 — Uy} for all m € N; note that
(Vin)men is an i.i.d. sequence of unif(1/2,1)-distributed random variables. It is
immediate from the construction of (Z,,)men, that

Xm+1

X < Vint1 for all m € N. (6)

For the discretized versions we use the elementary inequalities

T P
Z.J S 1—u7% Su f0r34110<u<1,i:2,37_._’n
i—1 i—1
to obtain
X(n) _ 1 )
% < Vipy1 forallm € Ny, n € N such that X > =.  (7)
an—ﬁ -



From this last inequality the statement of Theorem 1 follows immediately.
What happens as n — oo? We have

XM= gu (XY, Unst), Xt = 6(Xoms Yins U ),

with

On(z,y,u) = (w — %fnua:]) L(0,y) (%fnux])

+ %([num] —1) 1) (% [nuw]) + % Liyy (%[num]),

d(z,y,u) = (v —uzx) gy (ur) + uzly)(us).

Obviously, if (z,,yn) = (z,y) € I with uz # y, then ¢, (zn,yn,u) = d(z,y,u).
Together with a similar analysis for the second component this shows that the
implication

(X, VM) 5 (X, Vi) as. = (X7, V) = (Xng1, Vinar) as.

m m m+1* " m+1

holds for all m € Ny. Hence, as (Xén),YO(n)) — (X0, Ys) by construction,
XM _— 5 X, almost surely as n — oc for all m € N. (8)

It is an elementary matter to show that W is finite with probability 1 (in fact, we
have already mentioned that the tails of W decrease at a faster than exponential
rate). If W is finite, then the bounds (6) and (7) for the ratios of the X-values
show that we may apply dominated convergence to conclude that convergence in
(8) holds even after summation over m. Hence (5) holds and Theorem 3 is proved.

For the proof of Theorem 4 we cannot use a pathwise comparison as in the above
proof for Theorem 1 and Theorem 3, we have to compare distributions. Note
that X <y« Y is equivalent to Eh(X) < Eh(Y) for all non-decreasing functions
h : Ry — [0,1]. Using (4) is is straightforward to check that

Xm+1 . Ym
- > — — = - )
Xm = (]- fm) Um+1 + fm (]- Uerl) Wlth fm 1(0.5,1) (Xm ) 3
which in turn implies
£(Xm+1 ‘ 2o,y Zm) > aistr unif(0, X,,,) for all m € Ny, (9)

with Z,, = (X, Yim). Now let (U], )men be an i.i.d. sequence of unif(0, 1)-variables
and define (X, )men by Xg := Xo, X}, = U}, ;1 X, for all m € N. We claim
that

M M
Z m X > distr Z amX,, forall ai,...,apy >0 (10)
m=0 m=0
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holds for all M € Ng. This is obviously true for M = 0. Assume now that (10)
is true for some M € Ng and let A : Ry — [0,1] be non-decreasing. Then, for
arbitrary ai,...,ap41 > 0,

M+1

Eh(n;] ame>

v

M
//h(z m Xom + aM+1XM+1) AL(Xrrs1| Zos- .. Zar) dL(Zo, - .., Zar)
m=0
M

Z amXm + uaM+1XM) du dL(Zy, ..., Zn)

[

/ Eh( ame+(aM+uaM+1)XM) du
0 =0
—1

Il
- o

g 3

M+1
/1 Eh( Y an Xy + (an +uar)Xyy ) du = Bh(S amXy),
0 m=0 m=0

v

where we have used (9) in the first and (10) in the second inequality. Hence (10)
holds for all M € Ny. Using (10) with all a’s equal to 1 we obtain for all z > 0

o) M
P(ZXm>z) = MliLnOOP(ZXm>z)
m=0 m=0

M o'}
Mli_r>nooP(n;)X,'n >z> = P(mz_:OX,’n >z),

which completes the proof of Theorem 4.
To prove Theorem 5 we decompose with respect to the value of Z; and obtain

/E(w + i X | 21) dE(21 | 2o = (2,1))

Y%

Qx,y

y/x 1
/ (Sz *szuz,yfuz du + 51 *Quz,y du.
0

From the definition of the transition kernel P (or, more explicitly, on using the
almost sure construction introduced at the beginning of this section) it follows
that

ch,cy = T (Qz,y) for all (ac,y) el, c>0.

Combining these two statements we obtain the assertion of Theorem 5.

It remains to prove Theorem 2. The argument given for the asympotic upper
bound in Goldie and Griibel (1996, p.473) shows that the moment generating
function M (#) = Eexp(§W) of W satisfies M (0) < exp(C exp(8)) for all § > 0 if
C' is such that

1
2/ exp(Cexp(fu)) du < exp(Cexp(f) —6) for all § > 0. (11)
1/2



A standard argument based on Markov’s inequality yields the assertion of Theorem
2 if we can show that (11) holds with C = 4. To achieve this, let f;(#) and f,(0)
denote the left and right hand side respectively of (11) with C' = 4. Because of
f1(0) = £,(0) it is enough to show that

d%(&fl(e)) < %(afr(a)) for all > 0. (12)

Using the substitution z := exp (4 exp(fu)) we obtain

expldexp(0)

0f(0) = 2 / dz
l( ) exp(4 exp(6/2)) lOg(iE)

so that p
@(Gfl(G)) = 2 exp(4exp(d)) — exp(4exp(6/2)).

Letting y := exp(f/2), multiplying by y? exp(—4y?) and collecting terms we see
that (12) follows if

9(y) = —29> + ¥ exp(dy(1 —y)) + 1 + 8y’ log(y) — 2log(y) > 0

for all y > 1. It is easy to check that g(1) = ¢'(1) = 0, so this would in turn follow
from

g"(y) >0 foraly>1. (13)

We have 5

9"(y) = 20 + p(y) exp(4y(1 —y)) + 16 log(y) + 7

with p(y) := 64y? — 64y — 24y + 16y + 2. Elementary arguments show that
p(y) > p(1) = —6 for all y > 1, hence (13) follows on using that exp(4y(1—y)) < 1
on the range of interest.

We note in passing that these methods can also be used to show that C' =4 is
the best possible constant in (11).

4. Miscellaneous complements.

4.1 Let F(t,z) = Q1,4([0,2]) be the distribution function associated with Q1 ;.
Theorem 4 leads to the integral equation

Flt.2) = /OtF(t—U M)du n /tlF(E,M)du (14)

1—u" 1—-u u u

where 7 := max{z,0}. There seems to be little hope to solve this explicitly,
but (14) can be put to numerical use: discretization together with the trapezoidal
rule leads to an approximate version of (14) which in turn can be solved to any
desired degree of precision by iteration. Table 1 presents the values obtained in
this manner for the 0.5-, 0.9- and 0.99-quantiles of Q1 for some ¢-values (note that
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t 0.50 0.90 0.99

0.00 | 1.89 297 4.11
0.10 | 2.52 3.82 5.15
0.25 | 3.01 4.41 581
0.50 | 3.27 4.72 6.16

TABLE 1 Quantiles of Q1

Q1.+ = Q1,1-+). Section 2 contains an explicit expression for the expectation my (t)
associated with ()1, hence upper bounds for these quantiles can be obtained on
using Markov’s inequality: Q1+ ([ami(t),00)) < 1/a. With ¢t = 0.5 and 1/a = 0.01

this would lead to the bound 338.63, which overestimates the value 6.16 from Table
1 by a considerable amount; Theorem 2 gives the bound 14.84.

4.2 The upper and lower bounds on @)+ from Section 2 are close to each other
in the tails. The numerical procedure outlined in the preceding subsection can also
be used in connection with perpetuities; Figure 2 shows the distribution functions
associated with the bounds and with ()1 5. Note that the bound in Theorem 2 is
of interest only from z = 4e ~ 10.873 onwards.

1.0+

0.8+

0.6

0.4+

0.2

0.0 f T T T T T |
0 1 2 3 4 5 6 7

FIGURE 2 (Q1,0.5: distribution function and bounds

4.3 The results of Griibel and Rdsler (1996) can be used to obtain the joint
limit distribution of C,,, /n and Cy k, /n if l,/n — s and k, /n — t, for arbitrary
s,t € [0,1]. Such a result needs an assumption on how the selection procedures
depend on each other once the sets obtained in the course of the [,-search and
the ky,-search split; in Griibel and Rosler (1996) these selections were assumed to
be independent. Alternatively, we could base all selections in the m*" recursion
level on the same U,,, U, ~ unif(0,1), by selecting s,,; with i := [n,,Uy], if
{Sm1,-- s Smn, } With s;m1 < ... < Spmn, is the set under consideration at the
entry into this level (dependent selection). In practice FIND will operate on arrays

10



(vectors) rather than sets. As long as we consider one [ only, or in the case of
independent selection, the difference between arrays and sets is irrelevant due to the
permutation invariance of discrete uniform distributions; with dependent selection,
however, the joint distribution of the number of comparisons needed to find the
smallest and the largest item in S, for example, will depend on the order of the
entries of S. Interestingly, this dependence on the input disappears if we consider
the maximum of all Cy(S), with | varying from 1 to the length of S. It is this
quantity that is of interest in connection with a worst case analysis, and with
dependent selection we obtain

1 oo m
lim sup —C,; =1+ Z Hmax{Uk,l — Ui} (15)
m=1k=1

n—oo 1<Ii<n n

Loosely speaking, the worst case arises if our opponent, knowing how we will make
our choices, hides the element we wish to find in such a way that it is in the larger
one of the sets S_, S, in each recursion step. We have argued before that the bound
in Theorem 1 is tight if interest is in the tail behaviour of the distributions, (15)
supplements this: the right hand side is identical in distribution to the stochastic
upper bound in Theorem 1.
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