
Hoare's selection algorithm:a Markov chain approachRudolf Gr�ubelUniversit�at HannoverWe obtain bounds for the distribution of the number of comparisons neededby Hoare's randomized selection algorithm Find and give a new proof for Gr�ubeland R�osler's (1996) result on the convergence of this distribution. Our approchis based on the construction and analysis of a suitable associated Markov chain.Some numerical results for the quantiles of the limit distributions are included,leading for example to the statement that, for a set S with n elements and nlarge, Find will need with probability 0.9 about 4:72 �n comparisons to �nd themedian of S.AMS 1991 subject classi�cations . Primary 60J20; secondary 68P10.Keywords and phrases . Randomized algorithms, stochastic ordering, convergencein distribution, Markov chains.1. Introduction. Hoare's (1961) selection algorithm Find �nds the lth smallestof a set S � R with n elements, 1 � l � n. The variant to be discussed here proceedsas follows: If n = 1 the algorithm returns the only element of S. If n > 1, an elementx is chosen uniformly at random from S, and the sets S� = fy 2 S : y < xg andS+ = fy 2 S : y > xg are determined, requiring n� 1 comparisons. Let m = jS�jbe the size of the set of smaller elements. If m � l then continue with Find(S�; l).If m = l � 1 then return x. If m < l � 1 then continue with Find(S+; l �m� 1).Obviously, the set S is reduced by at least one element in each recursion step andthe algorithm thus terminates after at most n� 1 recursions.Interest is in the total number Cn;l of comparisons needed as this number essen-tially determines the time required by the algorithm. Devroye (1984) gave upperbounds for P (Cn;l > nz) which hold uniformly in n and l and decrease exponen-tially in z. In Gr�ubel and R�osler (1996), to which paper we also refer for relatedmaterial and a more detailed discussion of the background, it was proved thatCn;ln=n converges in distribution as n!1 if limn!1 ln=n = t 2 [0; 1].We will give a considerably simpler proof of this result. In Gr�ubel and R�osler(1996) the random variables Cn;l, 1 � l � n, for a slightly di�erent version of thealgorithm were considered simultaneously, and it was shown that the stochasticprocesses (Cn;dnte=n)0<t�1 converge in distribution as n ! 1. Our new proofstarts with the observation that the pairs (S; l) arising in the successive recursionsteps constitute a Markov chain. For the counting of comparisons we may reduce1



the state space of this chain to the pair (i; l), where i is the size of S; this does notdestroy the Markov property. Indeed, if (i; l) is the current state, then the nextstate will be selected uniformly at random from the set�(1; 1)	 [ �(i� k; l � k) : k = 1; : : : ; l� 1	 [ �(i� k; l) : k = 1; : : : ; i� l	;irrespective of the previous history of the process. If n; i1; i2; : : : ; 1; 1; 1 : : : is thesequence of �rst components of the successive states of the chain then Cn;l isthe sum of the values n � 1; i1 � 1; i2 � 1; : : : ; 0; 0; 0 : : :. The basic idea of theproof is that, after proper normalization, the sequence of chains arising as n!1converges to a continuous state space Markov chain; see Figure 1 below. To showthat this convergence entails the convergence of Cn;ln=n we use a suitable almostsure construction that allows for a pathwise analysis.This approach also leads to new results. One of these closes a `conceptual gap' inGr�ubel and R�osler (1996): it was shown there that the tails of the limit distributiondecrease at a faster than exponential rate. This does not permit a direct compari-son with Devroye's (1984) exponential bounds, however, as the latter refer to thedistribution of Cn;l=n for �nite n. Theorem 1 below shows that the stochastic upperbound derived in Gr�ubel and R�osler (1996) for the limit distribution in fact appliesto the distribution of Cn;l=n too, for all n 2 N and all l 2 f1; : : : ; ng. This seemsto be of some interest, �rstly because a recent result of Goldie and Gr�ubel (1996)can be applied to obtain the exact logarithmic rate of decrease of the tail proba-bilities of the upper bound (which is �z log z), and secondly because the bound istight in a sense which will be made precise below. Also, via the stochastic upperbound, we obtain a simple and explicit, non-asymptotic numerical upper bound forP (Cnl > nz) in Theorem 2.Theorem 3 is the convergence result mentioned above; a stochastic lower boundfor the limit distributions (which depend on the limit of ln=n) is given in Theorem4. In Theorem 5 these limit distributions are related to each other.We write L(X) for the distribution (`law') of a random quantity X and L(X jY )for the conditional distribution of X given Y . The symbol `!distr' denotes con-vergence in distribution. Also, X �distr Y for nonnegative random variables X;Yindicates that X is smaller than or equal to Y in stochastic order, i.e. P (X >z) � P (Y > z) for all z � 0. With both `!distr' and `�distr' we will occasionallyfollow the common sloppy practice of mixing random variables and distributionswhen notationally convenient. We write ? for convolution, �c for the unit mass inc 2 R+ and 1A for the indicator function of the set A. Finally, X � unif(a; b) ab-breviates the statement that X is a real-valued random variable which is uniformlydistributed on the interval (a; b).2. Main results. A discrete time Markov chain can be regarded as a collectionof stochastic processes indexed by an initial state. The distributional aspects of thiscollection are completely speci�ed by the state space I and the transition kernel Pof the Markov chain.Let I := f(x; y) 2 R2+ : 0 � y � xg and for each (x; y) 2 I let P �(x; y); � � be the2



distribution of �,� := � (x� Ux; y � Ux); if Ux � y,(Ux; y); if Ux > y, with U � unif(0; 1): (1)This de�nes a transition kernel P on I ; let Z = (Zm)m2N0 with Zm = (Xm; Ym)be a Markov chain with state space I and transition kernel P .For each n 2 N let In := n� in ; ln� : i; l 2 N ; l � io;and for each (i=n; l=n) 2 In let Pn�(i=n; l=n); � � be the discrete uniform distribu-tion onn� 1n; 1n�o[n� i� kn ; l � kn � : k = 1; : : : ; l� 1o[n� i� kn ; ln� : k = 1; : : : ; i� lo:This de�nes a transition kernel on In. Let Z(n) = (Z(n)m )m2N0 with Z(n)m =(X(n)m ; Y (n)m ) be a Markov chain with state space In and transition kernel Pn. Fig-ure 1 illustrates the basic transition mechanism for the n-chain and its continuouscounterpart.

�+ ++ + ++ + + +� + + + ++ � + + + �+ + � + + � ++ + + � + � + ++ + + + � � + + ++ + + + + � + + + + �
.....................................................................................................................................................................................................................

......................................................................................................................................................................................" x; ! y
...............................................................................................................................................

.........................................................
.......

Figure 1 Transitions of Z(n) and Z�: current state; �, { : potential next statesThe following relation provides the connection to the algorithm Find, it displaysCn;l as a function of Z(n):L� 1n Cn;l� = L� 1Xm=0�X(n)m � 1n� ����Z(n)0 = �1; ln��: (2)This, together with a suitable construction of the Z(n)-chains, leads to the followinguniform stochastic upper bound for Cn;l. Proofs are collected in the next section.3



Theorem 1 Let (Vm)m2N be a sequence of independent random variables withdistribution unif(1=2; 1), and let W := 1 +P1m=1Qmr=1 Vr. Then1n Cn;l �distr W for all n 2 N ; l 2 f1; : : : ; ng:The statement of the theorem can also be written assup1�l�n P (Cnl � z) � P (W � z) for all n 2 N ; z � 0:A similar statement with `the supremum inside P ', i.e. on the tails of sup1�l�n Cnl,would involve the joint distribution of Cn1; : : : ; Cnn. A brief discussion of thisproblem is given in Section 4.3.Sums over cumulative products of i.i.d. sequences, such as W in Theorem 1,have been studied by various authors, see e.g. Goldie and Gr�ubel (1996) and thereferences given there. They appear in insurance mathematics where the above Warises as the `perpetuity' associated with unif(1=2; 1). Goldie and Gr�ubel (1996)have recently investigated the tail behaviour of such perpetuities and obtained thefollowing result: limz!1 1z log z logP (W � z) = �1: (3)This together with Theorem 1 implies that supn2N;1�l�n P (Cn;l > nz) decreaseswith increasing z at a faster than exponential rate. Of course, for any �nite n,the support of the distribution of Cn;l=n has a �nite upper endpoint; this bound,however, increases with n. A closer analysis of W results in the following non-asymptotic bound.Theorem 2 For all z � 0, n 2 N and 1 � l � n,P (Cnl � nz) � exp(z + z log 4� z log z):The same construction as for the proof of Theorem 1, now carried out simulta-neously for all Z(n)-chains and the process Z, shows that Z(n) converges to Z in asense su�ciently strong to allow for application of the functional appearing in (2).Theorem 3 Let (ln)n2N be a sequence of integers with 1 � ln � n such thatln=n converges to a limit t 2 [0; 1] as n!1. Then, as n!1,1n Cn;ln !distr L� 1Xm=0Xm ���Z0 = (1; t)�:Let Qx;y := L�P1m=0Xm jZ0 = (x; y)�. For us the distributions Q1;t, 0 � t �1, are of particular importance as they arise as the limits in Theorem 3. Theconvergence in distribution implies Q1;t �distr W with W as in Theorem 1, seealso Theorem 9 in Gr�ubel and R�osler (1996). The next theorem gives a relatedstochastic lower bound. 4



Theorem 4 Let W 0 := 1 +P1m=1Qmr=1Ur where (Ur)r2N is a sequence ofindependent random variables with distribution unif(0; 1). Then Q1;t �distr W 0 forall t 2 [0; 1].From the de�nition of Z it follows easily that Q1;0 = Q1;1 = L(W 0), hence thelower bound in Theorem 4 is tight. This lower bound is the perpetuity associatedwith unif(0; 1). The result of Goldie and Gr�ubel (1996) can be applied to W 0too, and leads to the same tail behaviour, i.e. (3) also holds for W 0. Hence thestochastic interval obtained for the distributions Q1;t is small in the sense thatthe tail behaviour of upper and lower bound coincide if measured on a logarithmicscale; see also Section 4.2 below.The Markov property of (Zm)m2N0 together with a scaling property of the asso-ciated transition kernel can be used to obtain an integral equation that relates thedistributions Q1;t, 0 � t � 1, to each other. This in turn can be used to obtaininformation on the limit distributions, numerically or otherwise. In order to makethis precise we need the functions Tc : R+ ! R+, c > 0, de�ned by Tc(x) := cx.Further let Tc(Q) denote the image of the distribution Q on R+ under Tc (if X isa random variable with distribution Q then Tc(Q) is the distribution of cX).Theorem 5 For all t 2 [0; 1],Q1;t = Z t0 �1 ? T1�u�Q1; t�u1�u � du + Z 1t �1 ? Tu�Q1; tu � du:The formula in Theorem 5 can be used to obtain integral equations for themoments of the limit distributions, e.g. for m1(t) := R xQ1;t(dx) we getm1(t) = 1 + Z t0 (1� u) m1� t� u1� u� du + Z 1t u m1� tu� duwhich is solved by m1(t) = 2 � 2t log t � 2(1 � t) log(1 � t) (see also Gr�ubel andR�osler (1996), Theorem 11). Paulsen (1995) recently solved the analogous inte-gral equations for higher moments of Q1;t and in particular obtained an explicitexpression for the variance. In view of the bound in Theorem 1 the convergence inTheorem 3 implies the existence and convergence of all moments, i.e.limn!1E� 1nk Ckn;ln� = Z xk Q1;t(dx) < 1for all k 2 N if ln=n ! t. In Section 4 we will use Theorem 5 to derive anintegral equation for the distribution functions of Q1;t, 0 � t � 1, and obtain somenumerical results for the associated quantiles.3. Proofs. For Theorem 1 and Theorem 3 we use a suitable almost sureconstruction. 5



Let (Um)m2N be a sequence of independent, unif(0; 1)-distributed random vari-ables. We de�ne (Zm)m2N0 with Zm = (Xm; Ym) 2 I recursively by Z0 := (1; t)and Zm+1 := � (Xm � Um+1Xm; Ym � Um+1Xm); if Um+1Xm � Ym,(Um+1Xm; Ym); if Um+1Xm > Ym. (4)Obviously, (Zm)m2N0 is a Markov chain with transition kernel P and start at(1; t), i.e. we have used the sequence (Um)m2N to construct a suitable version ofthe prospective limit process.We now use the same sequence to construct suitable processes (Z(n)m )m2N0 , n 2 N .To this end we need the auxiliary functionshn : nkn : 1 � k � no� [0; 1)! nkn : 1 � k � no; hn� in; u� := 1n diue:Obviously, if U � unif(0; 1) then hn(i=n; U) has the discrete uniform distributionon fk=n : 1 � k � ig. We now de�ne (Z(n)m )m2N0 , Z(n)m = (X(n)m ; Y (n)m ) 2 Inrecursively by Z(n)0 := (1; ln=n) andZ(n)m+1 := 8><>: (X(n)m � �; Y (n)m � �); if � < Y (n)m ,(1=n; 1=n); if � = Y (n)m ,(� � 1=n; Y (n)m ); if � > Y (n)m , with � := hn(X(n)m ; Um+1):It is easy to see that (Z(n)m )m2N0 is a Markov chain with transition kernel Pn andstart at (1; ln=n). In view of (2) the statement of Theorem 3 will follow if we canshow that 1Xm=0�X(n)m � 1n� ! 1Xm=0Xm almost surely as n!1: (5)The main tool for the proof of this will be a uniform upper bound on the ratiosof successive X-values. Let Vm := maxfUm; 1 � Umg for all m 2 N ; note that(Vm)m2N is an i.i.d. sequence of unif(1=2; 1)-distributed random variables. It isimmediate from the construction of (Zm)m2N0 thatXm+1Xm � Vm+1 for all m 2 N 0: (6)For the discretized versions we use the elementary inequalitiesi� 1� diuei� 1 � 1� u; diue � 2i� 1 � u for all 0 < u < 1; i = 2; 3; : : : ; nto obtainX(n)m+1 � 1nX(n)m � 1n � Vm+1 for all m 2 N 0; n 2 N such that X(n)m > 1n : (7)6



From this last inequality the statement of Theorem 1 follows immediately.What happens as n!1? We haveX(n)m+1 = �n�X(n)m ; Y (n)m ; Um+1�; Xm+1 = ��Xm; Ym; Um+1�;with�n(x; y; u) = �x� 1ndnuxe� 1(0;y)� 1ndnuxe�+ 1n�dnuxe � 1� 1(y;1)� 1ndnuxe� + 1n 1fyg� 1ndnuxe�;�(x; y; u) = (x � ux) 1(0;y](ux) + ux 1(y;1)(ux):Obviously, if (xn; yn) ! (x; y) 2 I with ux 6= y, then �n(xn; yn; u) ! �(x; y; u).Together with a similar analysis for the second component this shows that theimplication(X(n)m ; Y (n)m )! (Xm; Ym) a.s. =) (X(n)m+1; Y (n)m+1)! (Xm+1; Ym+1) a.s.holds for all m 2 N 0. Hence, as (X(n)0 ; Y (n)0 )! (X0; Y0) by construction,X(n)m � 1n ! Xm almost surely as n!1 for all m 2 N : (8)It is an elementary matter to show that W is �nite with probability 1 (in fact, wehave already mentioned that the tails of W decrease at a faster than exponentialrate). If W is �nite, then the bounds (6) and (7) for the ratios of the X-valuesshow that we may apply dominated convergence to conclude that convergence in(8) holds even after summation over m. Hence (5) holds and Theorem 3 is proved.For the proof of Theorem 4 we cannot use a pathwise comparison as in the aboveproof for Theorem 1 and Theorem 3, we have to compare distributions. Notethat X �distr Y is equivalent to Eh(X) � Eh(Y ) for all non-decreasing functionsh : R+ ! [0; 1]. Using (4) is is straightforward to check thatXm+1Xm � (1� �m)Um+1 + �m (1� Um+1) with �m := 1(0:5;1)� YmXm�;which in turn impliesL�Xm+1 ��Z0; : : : ; Zm� �distr unif(0; Xm) for all m 2 N 0; (9)with Zm = (Xm; Ym). Now let (U 0m)m2N be an i.i.d. sequence of unif(0; 1)-variablesand de�ne (X 0m)m2N by X 00 := X0, X 0m+1 := U 0m+1X 0m for all m 2 N . We claimthat MXm=0�mXm �distr MXm=0�mX 0m for all �1; : : : ; �M � 0 (10)7



holds for all M 2 N 0. This is obviously true for M = 0. Assume now that (10)is true for some M 2 N 0 and let h : R+ ! [0; 1] be non-decreasing. Then, forarbitrary �1; : : : ; �M+1 � 0,E h�M+1Xm=0 �mXm�= Z Z h� MXm=0�mXm + �M+1XM+1� dL(XM+1 jZ0; : : : ; ZM ) dL(Z0; : : : ; ZM )� Z Z 10 h� MXm=0�mXm + u�M+1XM� du dL(Z0; : : : ; ZM )= Z 10 E h�M�1Xm=0 �mXm + (�M + u�M+1)XM� du� Z 10 E h�M�1Xm=0 �mX 0m + (�M + u�M+1)X 0M� du = E h�M+1Xm=0 �mX 0m�;where we have used (9) in the �rst and (10) in the second inequality. Hence (10)holds for all M 2 N 0. Using (10) with all �'s equal to 1 we obtain for all z � 0P� 1Xm=0Xm > z� = limM!1P� MXm=0Xm > z�� limM!1P� MXm=0X 0m > z� = P� 1Xm=0X 0m > z�;which completes the proof of Theorem 4.To prove Theorem 5 we decompose with respect to the value of Z1 and obtainQx;y = Z L�x + 1Xm=1Xm ���Z1� dL�Z1 ��Z0 = (x; y)�= Z y=x0 �x ? Qx�ux;y�ux du + Z 1y=x �x ? Qux;y du:From the de�nition of the transition kernel P (or, more explicitly, on using thealmost sure construction introduced at the beginning of this section) it followsthat Qcx;cy = Tc�Qx;y� for all (x; y) 2 I; c > 0:Combining these two statements we obtain the assertion of Theorem 5.It remains to prove Theorem 2. The argument given for the asympotic upperbound in Goldie and Gr�ubel (1996, p.473) shows that the moment generatingfunction M(�) = E exp(�W ) of W satis�es M(�) � exp�C exp(�)� for all � � 0 ifC is such that2 Z 11=2 exp�C exp(�u)� du � exp�C exp(�)� �� for all � � 0: (11)8



A standard argument based on Markov's inequality yields the assertion of Theorem2 if we can show that (11) holds with C = 4. To achieve this, let fl(�) and fr(�)denote the left and right hand side respectively of (11) with C = 4. Because offl(0) = fr(0) it is enough to show thatdd� ��fl(�)� � dd� ��fr(�)� for all � > 0: (12)Using the substitution x := exp�4 exp(�u)� we obtain�fl(�) = 2 Z exp(4 exp(�))exp(4 exp(�=2)) 1log(x) dxso that dd� ��fl(�)� = 2 exp�4 exp(�)� � exp�4 exp(�=2)�:Letting y := exp(�=2), multiplying by y2 exp(�4y2) and collecting terms we seethat (12) follows ifg(y) := �2y2 + y2 exp�4y(1� y)� + 1 + 8y2 log(y) � 2 log(y) � 0for all y > 1. It is easy to check that g(1) = g0(1) = 0, so this would in turn followfrom g00(y) � 0 for all y > 1: (13)We have g00(y) = 20 + p(y) exp�4y(1� y)� + 16 log(y) + 2y2with p(y) := 64y4 � 64y3 � 24y2 + 16y + 2. Elementary arguments show thatp(y) � p(1) = �6 for all y � 1, hence (13) follows on using that exp�4y(1�y)� � 1on the range of interest.We note in passing that these methods can also be used to show that C = 4 isthe best possible constant in (11).4. Miscellaneous complements.4.1 Let F (t; x) = Q1;t([0; x]) be the distribution function associated with Q1;t.Theorem 4 leads to the integral equationF (t; x) = Z t0 F� t� u1� u; (x� 1)+1� u � du + Z 1t F� tu; (x� 1)+u � du (14)where x+ := maxfx; 0g. There seems to be little hope to solve this explicitly,but (14) can be put to numerical use: discretization together with the trapezoidalrule leads to an approximate version of (14) which in turn can be solved to anydesired degree of precision by iteration. Table 1 presents the values obtained inthis manner for the 0:5-, 0:9- and 0:99-quantiles of Q1;t for some t-values (note that9



t 0.50 0.90 0.990.00 1.89 2.97 4.110.10 2.52 3.82 5.150.25 3.01 4.41 5.810.50 3.27 4.72 6.16Table 1 Quantiles of Q1;tQ1;t = Q1;1�t). Section 2 contains an explicit expression for the expectation m1(t)associated with Q1;t, hence upper bounds for these quantiles can be obtained onusing Markov's inequality: Q1;t�[�m1(t);1)� � 1=�. With t = 0:5 and 1=� = 0:01this would lead to the bound 338.63, which overestimates the value 6.16 from Table1 by a considerable amount; Theorem 2 gives the bound 14.84.4.2 The upper and lower bounds on Q1;t from Section 2 are close to each otherin the tails. The numerical procedure outlined in the preceding subsection can alsobe used in connection with perpetuities; Figure 2 shows the distribution functionsassociated with the bounds and with Q1;0:5. Note that the bound in Theorem 2 isof interest only from z = 4e � 10:873 onwards.
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Figure 2 Q1;0:5: distribution function and bounds4.3 The results of Gr�ubel and R�osler (1996) can be used to obtain the jointlimit distribution of Cn;ln=n and Cn;kn=n if ln=n! s and kn=n! t, for arbitrarys; t 2 [0; 1]. Such a result needs an assumption on how the selection proceduresdepend on each other once the sets obtained in the course of the ln-search andthe kn-search split; in Gr�ubel and R�osler (1996) these selections were assumed tobe independent. Alternatively, we could base all selections in the mth recursionlevel on the same Um, Um � unif(0; 1), by selecting smi with i := dnmUme, iffsm1; : : : ; smnmg with sm1 < : : : < smnm is the set under consideration at theentry into this level (dependent selection). In practice Find will operate on arrays10



(vectors) rather than sets. As long as we consider one l only, or in the case ofindependent selection, the di�erence between arrays and sets is irrelevant due to thepermutation invariance of discrete uniform distributions; with dependent selection,however, the joint distribution of the number of comparisons needed to �nd thesmallest and the largest item in S, for example, will depend on the order of theentries of S. Interestingly, this dependence on the input disappears if we considerthe maximum of all Cl(S), with l varying from 1 to the length of S. It is thisquantity that is of interest in connection with a worst case analysis, and withdependent selection we obtainlimn!1 sup1�l�n 1n Cn;l = 1 + 1Xm=1 mYk=1maxfUk; 1� Ukg: (15)Loosely speaking, the worst case arises if our opponent, knowing how we will makeour choices, hides the element we wish to �nd in such a way that it is in the largerone of the sets S�; S+ in each recursion step. We have argued before that the boundin Theorem 1 is tight if interest is in the tail behaviour of the distributions, (15)supplements this: the right hand side is identical in distribution to the stochasticupper bound in Theorem 1. ReferencesDevroye, L. (1984) Exponential bounds for the running time of a selection algorithm. J.of Computer and System Sciences 29, 1-7.Goldie, C.M. and Gr�ubel, R. (1996) Perpetuities with thin tails. Adv. in Applied Prob.28,463-480.Gr�ubel, R. and R�osler, U. (1996) Asymptotic distribution theory for Hoare's selectionalgorithm. Adv. in Applied Prob. 28, 252-269.Hoare, C.A.R. (1961) Algorithm 65, Find. Communications of the ACM 4, 321-322.Paulsen, V. (1995) The moments of Find. Preprint, Universit�at Kiel.
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