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Heterogeneous Auto-Regressive Conditional Heteroskedastic processes were
introduced by Müller, Dacarogna, Davé, Olsen, Pictet and von Weizsäcker in
order to improve traditional ARCH-type models describing financial time se-
ries. In a later paper Embrechts, Samorodnitsky, Dacorogna and Müller asked
how heavy the tails of stationary processes of this type are. We provide a par-
tial answer to this question, using mainly monotonicity arguments to compare
HARCH processes to other processes with a simpler recursive structure.

AMS 1991 subject classifications. Primary 60K30; secondary 90A09.
Keywords and phrases. Financial time series, Pareto tails, random recursions.

1. Introduction and results. Suppose that {Sn : n = 0, 1, 2, . . .} denotes the
market prices of a financial asset (e.g. stock, exchange rate, commodity, . . .) at given
discrete time points. In empirical finance, rather than considering Sn, one looks
at the so–called (log–)return process {Rn = log (Sn/Sn−1) : n = 1, 2, . . .}. When
plotted, the latter series at first very much looks like white noise. A more care-
ful analysis however reveals important extra structure. The following, so–called
stylised facts of (Rn) have been deduced in numerous econometric publications;
see for instance Taylor (1986):

(SF1) the Rn’s are uncorrelated;
(SF2) (|Rn|) as well as

(
R2

n

)
exhibit significant correlation;

(SF3) the unconditional distribution P (R > x) are heavy–tailed, or indeed
leptokurtic;

(SF4) the volatility of the returns (Rn) changes stochastically, and
(SF5) the data show long memory.
The above observations are clearly linked: for instance (SF4) induces, through

variance mixing, heavy–tailedness, i.e. (SF3). Also (SF1–2) can partly be explained
through a careful choice of stochastic volatility in (SF4). Volatility is the main
driving force behind trading in financial markets. Money is gained or lost in high–
volatile markets (in this brief discussion, we do not distinguish between implied
or historical volatility). To give an idea of volatility changes, whereas for most
markets, volatility on a yearly basis is about 15–20%, in periods of crisis, values may
jump to (and indeed persist at) much higher levels. During the 1987 crash, volatility
jumped to well over 150%, during the Kuweit crisis volatility persisted for longer
periods at about 40%, and in the wake of the LTMC debacle peaks of about 80%
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were reached. As such, of key importance is the modelling of the volatility process
{σn : n = 1, 2, . . .} in Rn = σnεn, where (εn) is a specified innovation process.
Clearly, the plain vanilla Black–Scholes model where σn ≡ σ and the (εn) are iid
N(0, 1) is definitely out. Early competitors for more realistic models were of the
so–called ARCH type: for instance, an ARCH(k) process satisfies the following
recursive equation,

Rn = σnεn , σ2
n = c0 +

k∑
j=1

cjR
2
n−j ,

where the (εj) are iid innovations and the constants (cj) so defined that a stationary
solution to the above equations exists. In line with classical time series analysis, one
may introduce a moving average term in the σ2

n and/or include differencing. Such
processes exhibit many of the properties found in empirical data. In particular,
(SF3) can be deduced using a powerful result of Kesten (1973) on products of
random matrices. The key point is that the stationary solution of the defining
recursive equations turns out to be the distributional fixpoint of a random map.
For an example on this for ARCH(1) processes, see Embrechts, Klüppelberg and
Mikosch (1997), Section 8.4. For processes more general than the ARCH-GARCH
type, such a fixpoint approach may not exist. In the present paper such a class
of processes is discussed and its distributional tail properties investigated using
a stochastic inequality argument. We believe that this approach may be more
widely applicable. For an excellent review on stochastic volatility models, see Frey
(1997).

A HARCH(k) process (Rn)n∈N0 with parameters c0, . . . , ck satisfies the recursive
relation

(1) Rn = σnεn, σ2
n = c0 +

k∑
j=1

cj

( j∑
i=1

Rn−i

)2

,

where we generally assume that c0 > 0, ck > 0 and cj ≥ 0 for j = 1, . . . , k−1. The
innovation sequence (εn)n∈N0 consists of independent and identically distributed
random variables; εn is independent of σn. Typically, the distribution of the ε-
variables is assumed to be normal with mean 0 and variance σ2 > 0, which we
abbreviate by ε ∼ N(0, σ2), or the εn’s have a (central) Student t-distribution.

HARCH processes were introduced by Müller et al. (1995) in order to improve
the traditional ARCH-type models, especially with a view towards long memory
of volatility ((SF5)) and possible asymmetries between volatilities with different
degrees of time resolution. The main difference between the HARCH and ARCH
definition is that in the former, a cancelling effect for successive returns is possible
because of the

∑j
i=1Rn−i term. It is especially the latter which allows for the

distinction between so–called intra–day and long–term traders; see Müller et al.
(1995). In Embrechts et al. (1998) the question was asked how heavy the tails of
the stationary distribution of such models are ((SF3)). An answer might imply, for
example, the existence or non-existence of certain moments, which in turn is of con-
siderable importance for the applicability of standard statistical techniques such as
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central-limit-theorem based asymptotic confidence intervals for the model param-
eters; see Embrechts, Klüppelberg and Mikosch (1997) for an in-depth discussion
of such aspects.

Embrechts et al. (1998) give conditions under which a k-step Markov chain
(Rn)n∈N0 with dynamics given by (1) converges in distribution; in this case we
write R∞ for the (distributional) limit of Rn as n → ∞. General Markov chain
theory can be used to show that the law of R∞ does not depend on the initial
values of R0, . . . , Rk−1. We will assume throughout this note that the parameters
c0, . . . , ck of the model and the innovation distribution are such that we indeed are
in this situation and refer to Embrechts et al. (1998) for further details. Under
these conditions we have the following results.

Theorem 1 If c1 > 0 and P
(
ε2 > c−1

1

)
> 0, then

(2) lim inf
r→∞

logP
(
|R∞| > r

)
log r

> −∞.

Theorem 2 If the distribution of the innovations εi, i ∈ N, is symmetric about
0 and if P

(
ε2 > max{c1, . . . , ck}−1

)
> 0, then (2) holds.

As a corollary we obtain that under quite general conditions not all moments
of the stationary distribution exist. For symmetric innovation distributions the
distribution of R∞ is also symmetric so that both individual tails decrease at a
rate which is at best polynomial (‘Pareto tails’). The proofs, which we give in the
next section, can also be used to obtain explicit asymptotic lower bounds. Together
with some other extensions these are discussed in Section 3.

2. Proofs. Both proofs rely on a comparison to a suitably chosen simpler model.
Our results deal with distributions rather than individual random variables. In
order to be able to compare distributions we need a notion of stochastic ordering:
If µi, i = 1, 2, are probability distributions on the (Borel subsets of) the real line
R, then we call µ1 smaller than or equal to µ2 and write µ1 � µ2, if µ1((x,∞)) ≤
µ2((x,∞)) for all x ∈ R. We will occasionally use the sloppy notation X1 � X2

if L(X1) � L(X2) where, generally, L(X) denotes the distribution of the random
variable X. The key to heavy-tailedness is the following observation, interesting in
its own right.

Lemma If X is a non-negative random variable with P (X > 1) > 0 and if the
non-negative random variable Y satisfies the stochastic inequality

(3) Y � X · Y, with X and Y independent,

then either P (Y = 0) = 1 or

lim inf
y→∞

logP (Y > y)
log y

> −∞.
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Proof of the lemma. If Y = 0 almost surely then there is nothing to prove,
so let c > 0 be such that p := P (Y ≥ c) > 0. By assumption there exists an a > 1
such that q := P (X ≥ a) > 0. Clearly, we may assume that q < 1, as otherwise Y
would be equal to +∞ with non-vanishing probability. We claim that

(4) P (Y ≥ c · an) ≥ p · qn for all n ∈ N0.

For n = 0 this is obvious. If (4) holds for some n ∈ N0 then we obtain on using (3)

P
(
Y ≥ can+1

)
≥ P

(
X · Y ≥ can+1

)
≥ P

(
aY ≥ can+1, X ≥ a

)
= P

(
Y ≥ can

)
P
(
X ≥ a

)
≥ p qn q,

which completes the induction step so that (4) is proved. We now use a standard
trick to apply the tail bound (4) in connection with the continuous limit y → ∞:
Any y ≥ c determines a unique n = n(y) ∈ N0 such that can ≤ y < can+1. Note
that n ≤ (log a)−1(log y − log c) and that log q < 0. Therefore,

logP (Y ≥ y) ≥ logP (Y ≥ can+1)
≥ log p + (n+ 1) log q

≥ log p +
(

log y − log c
log a

+ 1
)

log q,

which yields the asymptotic lower bound

lim inf
y→∞

logP (Y ≥ y)
log y

≥ log q
log a

> −∞.

�

Proof of Theorem 1. The model equation (1) and the non-negativity as-
sumption on the parameters together imply

(5) R2
n ≥ c1ε

2
nR

2
n−1.

Stochastic ordering is compatible with weak convergence in the following sense: if
limn→∞ P (Xn ≤ x) = P (X ≤ x) for all continuity points x of the distribution
function of X and limn→∞ P (Yn ≤ y) = P (Y ≤ y) for all continuity points y of
the distribution function of Y , and if Xn � Yn for all n ∈ N, then X � Y . Hence,
if Rn converges to R∞ in distribution then the right hand side of (5) converges
to c1ε

2R2
∞, with ε independent of R∞ and L(ε) = L(εi) (see Billingsley (1968),

Theorem 3.2). Putting this together we see that we can apply the lemma with
Y = R2

∞, X = c1ε
2. �
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Proof of Theorem 2. Let

ηn :=

{ 1, εn > 0,
0, εn = 0,
−1, εn < 0,

be the sign of εn and let

An,m :=
{
ηn+k = ηn for k = 1, . . . ,m

}
be the event that the m innovations follwoing εn have the same sign as εn. Because
of the symmetry of the innovation distribution we have that An,m is independent
of all ε- and R-values with index less than or equal to n.

Now suppose that (Rn)n∈N0 satisfies (1), let j ∈ {1, . . . , k} be fixed. On An−j,j

we have

cj

( j∑
i=1

Rn−i

)2

≥ cjR
2
n−j ,

so that

(6) R2
n ≥ cjε

2
n1An−j,j R

2
n−j ,

where 1A denotes the indicator function of the set A. With (6) we can proceed as
with (5) in the proof of Theorem 1. �

3. Comments. (a) In Embrechts et al. (1998) explicit conditions for the ex-
istence of moments were obtained. These results rely on the special algebraic
structure of the model equation. Here our results are less explicit, but Theorem 1,
for example, can easily be transferred to processes with a different dynamic evolu-
tion. Using comparison arguments rather than algebraic manipulations increases
the range of applicability, but yields less explicit results.

(b) Our results can in principle be used to obtain quantitative statements on the
asymptotic lower bounds. In the situation of Theorem 1, for example, any pair of
values a > c−1

1 , q > 0 with P (ε2 ≥ a) ≥ q yields

lim inf
r→∞

logP
(
|R∞| > r

)
log r

≥ 2 log q
log a+ log c1

.

For a given innovation distribution we can determine the best lower bound by
varying a.

(c) A simple fact such as the above lemma often underlies the phenomenon that
light-tailed model input can generate heavy-tailed model output. For a similar
reasoning in the context of random affine recurrences see Goldie and Grübel (1996),
Theorem 4.1. Even the famous Cramér results on the probability of ruin in the
Sparre-Anderson model of risk theory can be seen in this light: If M denotes the
maximum of a random walk with generic step X, then M =distr max(0,M + X).
If P (X > 0) > 0 then, upon taking exponentials in the stochastic inequality we
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see that the lemma can be used to explain the fact that, in a random walk, even
a step distribution with bounded support will generate a distribution of the global
maximum that has at best an exponentially decreasing tail.
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