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GAPS IN DISCRETE RANDOM SAMPLES
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Abstract

Let (Xi)i∈N be a sequence of independent and identically distributed random variables
with values in the set N0 of nonnegative integers. Motivated by applications in
enumerative combinatorics and analysis of algorithms we investigate the number
of gaps and the length of the longest gap in the set {X1, . . . , Xn} of the first n
values. We obtain necessary and sufficient conditions in terms of the tail sequence
(qk)k∈N0 , qk = P(X1 ≥ k), for the gaps to vanish asymptotically as n → ∞: these
are

∑∞
k=0 qk+1/qk < ∞ and limk→∞ qk+1/qk = 0 for convergence almost surely and

convergence in probability, respectively. We further show that the length of the longest
gap tends to ∞ in probability if qk+1/qk → 1. For the family of geometric distributions,
which can be regarded as the borderline case between the light-tailed and the heavy-
tailed situations and which is also of particular interest in applications, we study the
distribution of the length of the longest gap, using a construction based on the Sukhatme–
Rényi representation of exponential order statistics to resolve the asymptotic distributional
periodicities.

Keywords: Geometric distribution; heavy tail; light tail; periodicities; Sukhatme–Rényi
representation
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1. Introduction

Let (Xi)i∈N be a sequence of independent and identically distributed random variables with
values in N0, the set of nonnegative integers. Standard examples are the geometric and the
Poisson distributions. We consider the first n values of the sequence as a random set,

An := {X1, . . . , Xn}.
Obviously,

An ⊂ {mn, . . . ,Mn} with Mn := max
1≤i≤nXi and mn := min

1≤i≤nXi.

By a gap we mean a contiguous and nonempty subset {j, . . . , j + l − 1} of the complement
{mn, . . . ,Mn} \ An of An in the sample range that is maximal in the sense that both j − 1,
j + l ∈ An. We then call l the length of the gap. We are interested in the total number, Yn, of
gaps and the length, Ln, of the longest gap among the first n sample values.

Such quantities are of interest in enumerative combinatorics, in particular in connection with
compositions of integers, and analysis of algorithms, in particular approximate counting, and
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elsewhere; see [6], [4], and the references therein. A related concept, weak gaps, essentially
the size of {0, . . . ,Mn} \An, has been investigated in [9]. In all three references the geometric
distribution plays a central role, as does the approach to such problems by methods from complex
analysis, using, for example, Mellin transforms, analytic de-Poissonization, and singularity
analysis.

In the present paper we investigate the gaps for general discrete distributions, with the aim
of classifying these distributions with respect to the asymptotic behavior of the number of gaps
or the length of the longest gap as the sample size increases to infinity. The results show that the
geometric case can be seen as a ‘borderline’ between Ln → 0 and Ln → ∞. A second aim of
the present paper is the study of the distributional asymptotics of Ln as n → ∞ for geometric
random samples. We show that the asymptotic distributional periodicities can be resolved in
terms of a suitable background construction.

Our methods are probabilistic. For example, in connection with almost-sure convergence
for distributions with light tails we regard the sequence of sample maxima as a Markov chain;
we use the Sukhatme–Rényi representation in connection with the geometric case, and we use
this representation together with the quantile transformation in the heavy-tailed case.

Apart from being connected to combinatorics and theoretical computer science, the setup
studied in this paper is also related to infinite urn models, where urns are numbered 0, 1, 2 . . .
and balls are independently put into urn k with probability pk . The classical models have a
finite number of urns and have been extensively studied, but the infinite case has already been
considered in [8]. These models have received some attention recently; see [1] and [7] for
example. The latter gives a local limit theorem for the number of occupied urns, which is the
cardinality ofAn in our notation. The survey [3] also points to other applications of infinite urn
models. Still, by far, the most heavily studied model concerns the geometric probabilities pk ,
and aside from the papers treating this case, we are not aware of any results on the structure of
gaps in a general setting.

The results are given in the next section, together with some related remarks and examples.
Proofs are collected in Section 3.

2. Results

2.1. Light and heavy tails

Our first two results deal with the extreme case that the gaps will eventually vanish. Let
(�,A,P) be the basic probability space on which the variables (Xi)i∈N are defined. Set
pk = P(X1 = k) for k ∈ N0. To avoid the trivial situation that gaps may be caused by some of
the pks being 0, we assume throughout that

pk > 0 for all k ∈ N0. (1)

In view of Ln ∈ N0 the almost-sure convergence of Ln to 0 as n → ∞ is equivalent to the
property that Ln(ω) = 0 from some n = n(ω) onwards for P-almost all ω. Of course, at this
end of the spectrum the number of gaps and the length of the longest gap become asymptotically
indistinguishable in view of {Yn = 0} = {Ln = 0}, so that it is enough to consider one of these
variables. Let (qk)k∈N0 ,

qk :=
∞∑
j=k

pj = P(Xi ≥ k) for all k ∈ N0,

be the tail sequence associated with (pk)k∈N0 .
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Theorem 1. The sequence (Ln)n∈N converges to 0 with probability 1 as n → ∞ if and only if

∞∑
k=0

qk+1

qk
< ∞. (2)

For the weaker convergence in probability, we again adapt the convergence to the fact thatLn
and Yn are nonnegative and integer valued. Convergence of Ln to 0 in probability is equivalent
to limn→∞ P(Ln = 0) = 1, and similarly for Yn. In the proof we will see that if Ln does not
converge to 0 in probability then we even have P(lim supn→∞ Ln ≥ 1) = 1, which of course
is not surprising in view of Kolmogorov’s 0–1 law for terminal events.

Theorem 2. Let Zn be Ln or Yn. Either of the conditions (3) or (4) below is necessary and
sufficient for the convergence in probability of Zn to 0 as n → ∞:

lim
k→∞

qk+1

qk
= 0, (3)

lim
n→∞ EZn = 0. (4)

Remark 1. Conditions (2) and (3) can be rewritten in terms of the individual probabilities pk
in (1) as

∑∞
k=0 pk+1/pk < ∞ and limk→∞ pk+1/pk = 0, respectively; see Lemma 1, below.

Example 1. The Poisson distribution with mean λ is an example that satisfies (3), but not (2)
as

pk+1

pk
= λ

k + 1
.

More broadly, suppose that pk ∝ (c/kα)k for some constants c > 0 and α > 0. We then have
pk+1/pk ∝ k−α . Hence, convergence in probability to 0 of the longest gap (or the number of
gaps) holds for the full family, but almost-sure convergence requires that α > 1.

At the other end of the spectrum of tail behavior we obtain a sufficient condition for the
longest gap to converge to ∞ in probability.

Theorem 3. If

lim
k→∞

qk+1

qk
= 1 (5)

then, for all l ∈ N,

lim
n→∞ P(Ln ≥ l) = 1.

The methods that we will use in the proofs can also be used to obtain more specific results on
the asymptotic behavior of Ln or Yn as n → ∞ under specific assumptions on the asymptotics
of the individual probabilities pk as k → ∞.

Theorem 4. Suppose that pk ∝ 1/kα for some constant α > 1. Then

E Yn ∝ n1/α. (6)
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2.2. Geometric case

We now consider the special case that the X-sequence is from a geometric distribution: for
some p, 0 < p < 1, and all i ∈ N,

P(Xi = k) = (1 − p)kp for all k ∈ N0. (7)

This case plays a central role in the application in enumerative combinatorics and analysis of
algorithms that we mentioned in the introduction.

We write L(Y ) for the distribution of a random quantityY . Our main result below implies that
the family {L(Ln) : n ∈ N} is tight and that Lnm converges in distribution along subsequences
(nm)m∈N of a specific type determined by p. This is a familiar phenomenon in the analysis
of random discrete structures and often appears in connection with problems in enumerative
combinatorics or analysis of algorithms. In the present context it has already been noted in [4],
[6], and [9].

Remark 2. (a) We mention in passing that (7) is the ‘number of failures’ version of the
geometric distribution. With this version we have support N0 as required in (1). Trivial
modifications lead to a variant for the geometric distribution that arises as the time of the first
success, and indeed, a similar comment applies to our results in connection with more general
integer shifts of arbitrary discrete distributions.

(b) We expect that the results in this section can be extended from the geometric case to a more
general class of distributions with tail ratios converging to a limit, i.e. with

lim
k→∞

qk+1

qk
= η ∈ (0, 1), (8)

possibly under additional conditions on the rate of convergence in (8).

Our aim now is to give a probabilistic construction that leads to a representation of the whole
family of potential limit distributions along subsequences as deterministic transformations of
one single distribution; see [5] for more on this approach and some related examples. A similar
construction has also been used in [2] in connection with the analysis of an election algorithm.
Such a construction can be used to handle simultaneously a variety of random variables related
to gaps. Below we only deal with Ln, but the method can also be used for Yn. Indeed, the
geometric case can be seen as a borderline between the distributions that have an asymptotically
contiguous sample range and those where the gaps (number, maximal length) grow beyond all
bounds. For example, large geometric samples will have one long contiguous part starting at
0, and our method can be used to analyze the distributional asymptotics of the size

Sn := max{k ∈ N0 : {0, 1, . . . , k} ⊂ {X1, . . . , Xn}}
of this block as n → ∞, or of the difference Mn − Sn.

The starting point for the construction is a sequence (Vi)i∈N of independent random variables
where, for each i ∈ N, Vi has an exponential distribution with mean 1/i. Then

M ′
n := max{Vi : i = 1, . . . , n− 1} ↑ M∞ := sup{Vi : i ∈ N}

with

P(M∞ ≤ x) =
∞∏
k=1

(1 − e−kx) for all x ≥ 0. (9)
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In particular, the maximum of the V -variables is finite with probability 1. Let

Wl,n :=
n∑
i=l

Vi for l ≤ n.

It is easy to check that, for all l ∈ N,

Zl,n := Wl,n − log n → Zl,∞ as n → ∞
almost surely and in quadratic mean for some finite random variable Zl,∞; see, e.g. the
martingale argument given in [5]. Finally, we define the functions φp : [0,∞) → N and
ψp : [0,∞) → [0, 1) by

φp(x) := �c(p)−1x� and ψp(x) := {c(p)−1x}, (10)

with
c(p) := − log(1 − p).

Here {x} denotes the fractional part of x; it should be clear from the context whether the curly
brackets refer to this function or whether they are used to denote a set.

We can now state our next result. Note that the lower bound in (11), below, does not depend
on n, which implies that {L(Ln) : n ∈ N} is tight.

Theorem 5. With the notation introduced above,

P(M∞ ≤ c(p)(l − 1)) ≤ P(Ln ≤ l) ≤ P(M ′
n ≤ c(p)(l + 1)) (11)

for all n, l ∈ N. Furthermore, if (nm)m∈N is such that nm → ∞ andψp(log nm) → η for some
η ∈ [0, 1] as m → ∞, then Lnm converges in distribution to L∞(η) as m → ∞, with

L∞(η) := max
l∈N

(c(p)−1Vl + ψp(Zl+1,∞ + c(p)η)− ψp(Zl,∞ + c(p)η)). (12)

Finally, for all η ∈ [0, 1] and l ∈ N,

P(M∞ ≤ c(p)(l − 1)) ≤ P(L∞(η) ≤ l) ≤ P(M∞ ≤ c(p)(l + 1)). (13)

It may not be apparent that the maximum in (12) is taken over a set of integer values, but we
will see in the proof that

c(p)−1Vl + ψp(Zl+1,∞ + c(p)η)− ψp(Zl,∞ + c(p)η) ∈ {�c(p)−1Vl�, c(p)−1Vl�}.
Theorem 5 can be used to obtain information about the family of limit distributions. For

example, it follows from (12) that, for all η ∈ [0, 1],
|L∞(η)− c(p)−1M∞| ≤ 1.

Furthermore (note that we have suppressed the dependence on p in (13)), we see that pL∞(η)
converges in distribution to M∞ as p → 0, whatever η, which means that, for small success
probabilities, the periodicity will become negligible, and which also gives the order of growth of
the longest gap. The last statement of Theorem 5 (see (13)) provides upper and lower bounds for
the distribution function of L∞(η) that arise from shifting the continuous distribution function



Gaps in discrete random samples 1043

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Continuous limit and discrete bounds (see text).

ofM∞, which is given explicitly (and in a numerically accessible form) in (9). Figure 1 shows
the distribution function of c(p)−1M∞ and bounds for P(L∞(η) ≤ l), 0 ≤ η ≤ 1, for p = 1

10 .
As L∞(η) is an integer-valued random variable, bounds for its distribution function can be
specified by intervals for the values in l ∈ N0; in the figure, these intervals are visualized by
vertical bars.

Constructions of the above type can be used to obtain an intuitive understanding of the
structure of gaps (in the geometric case, but also more generally). Clearly, as n increases,
either a new gap may appear at the right end of the sample due to a jump in the largest value,
or nothing may happen at all if the next sample value is already occupied, or an existing gap
may shrink or be divided into two smaller gaps. For small p, the limit model may serve as an
approximation if, for example, interest is in the probability that the largest gap is the one at the
right end. The next result shows that this happens with probability slightly bigger than 1

2 .

Theorem 6. Let Vi, i ∈ N, be as above, and let Ml,∞ := maxi≥l Vi . Then, as p → 0, the
limiting probability that the longest gap occurs as the difference between the two largest sample
values converges to

P(V1 > M2,∞) =
∫ ∞

0
e−x

∞∏
k=2

(1 − e−kx) dx = EM1,∞ − EM2,∞ ≈ 0.516.

3. Proofs

We will prove the results for the light-tailed case first, then deal with the geometric case, and
finally give the proofs for heavy-tailed distributions as these use the constructions introduced
for the geometric case. Let

hk := P(X1 ≥ k + 1 | X1 ≥ k) = qk+1

qk
, k ∈ N0,

be the tail ratios. We first substantiate the remark following Theorem 2.
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Lemma 1. We have

lim
k→∞hk = 0 ⇐⇒ lim

k→∞
pk+1

pk
= 0, (14)

∞∑
k=0

hk < ∞ ⇐⇒
∞∑
k=0

pk+1

pk
< ∞. (15)

Remark 3. For distributions with heavy tails, (5) is implied by limk→∞ pk+1/pk = 1, but the
converse is not true.

Proof of Lemma 1. We first show that both parts of (14) are equivalent to

lim
k→∞ rk = 0 with rk := qk+1

pk
. (16)

The sufficiency of the latter for the right-hand side of (14) is clear. The necessity follows from
the observation that if pk+1/pk → 0 as k → ∞ then, for a fixed δ ∈ (0, 1), there exists a k0
such that, for all k ≥ k0,

pk+1

pk
≤ δ.

Therefore, for such ks and m ≥ 1, we have

pk+m = pk+m
pk+m−1

pk+m−1

pk+m−2
· · · pk+2

pk+1
pk+1 ≤ δm−1pk+1. (17)

Hence, whenever k ≥ k0, the numerator of (16) is bounded by pk+1/(1 − δ) and (16) follows.
The equivalence of limk→∞ hk = 0 and (16) follows immediately from

hk = 1 − 1

1 + rk
, rk = 1

1 − hk
− 1.

For the second statement of the lemma, we first show that both parts of (15) are equivalent to∑∞
k=0 rk < ∞, using similar arguments as in the proof of the first statement. If the sequence

(pk+1/pk)k∈N is summable then pk+1/pk → 0, and we can use the bound (17) to obtain
summability of (rk)k∈N. To obtain summability of the r-sequence from the summability of the
h-sequence we use the fact that

1

1 − x
− 1 ≤ 2x for 0 ≤ x ≤ 1

2
,

which implies that rk ≤ 2hk for all sufficiently large k.

3.1. Proof of Theorem 1

We first show that condition (2) implies almost-sure convergence.
Because of (1) we have Mn ↑ ∞ with probability 1, i.e. Mn(ω) ↑ ∞ for all ω ∈ A, with

someA ∈ A such that P(A) = 1. Let (Un)n∈N be the subsequence of strictly increasing values.
Formally, we set

U1(ω) := M1(ω), Un+1(ω) = min{Mj(ω) : Mj(ω) > Un(ω)} for all n ∈ N

for all ω ∈ A; on the null set � \A we may assign some arbitrary value to the sequence. Then
(Un)n∈N is a Markov chain with state space N0 and transition probabilities

pj,j+l = P(X1 = j + l | X1 > j) for all j ∈ N0, l ∈ N.
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Let B be the event that infinitely many j ∈ N0 do not appear in the U -sequence and let
Bj be the event that j does, but j + 1 does not appear. Clearly, using Mn ↑ ∞ again,
B ∩ A = lim supj→∞ Bj ∩ A and

P(Bj ) =
∞∑
n=1

P(Un = j, Un+1 > j + 1)

=
∞∑
n=1

P(Un+1 > j + 1 | Un = j)P(Un = j)

=
( ∞∑
l=2

pj,j+l
)( ∞∑

n=1

P(Un = j)

)

≤ P(X1 ≥ j + 2 | X1 ≥ j + 1)

= hj+1,

where in the penultimate step we used the fact that the events {Un = j}, n ∈ N, are disjoint.
The Borel–Cantelli lemma now gives P(B) = 0, which means that

η := inf{j ∈ N : {k ∈ N : k ≥ j} ⊂ {Un : n ∈ N}}
is finite with probability 1. We further define

ρ(ω) := inf{n ∈ N : Mn(ω) ≥ η(ω)},
τj (ω) := inf{n ∈ N : Xn(ω) = j}, j = 0, 1, . . . .

Again, on some set C of probability 1, all these random variables are finite. Finally, for all
ω ∈ C, we have Ln(ω) = 0 for all n ≥ max{τ0(ω), . . . , τη(ω)(ω)}. This proves that Ln
converges to 0 with probability 1 as n → ∞.

We now show that condition (2) is also necessary for almost-sure convergence. In the Markov
chain framework let Ak be the event that {j ∈ N : j ≥ k} is a subset of the range {Un : n ∈ N}
of the process of successive maxima. Let k ∈ N be given, and let τ := inf{n ∈ N : Un ≥ k}.
Using the strong Markov property and the fact that Uτ = k on Ak , we obtain

P(Ak) =
∞∑
l=1

P(Ul+j = k + j for all j ∈ N | Ul = k)P(τ = l)

=
∞∑
l=1

( ∞∏
j=0

P(Ul+j+1 = k + j + 1 | Ul+j = k + j)

)
P(τ = l)

=
∞∏
j=0

(1 − hk+j+1)

≤ exp

(
−

∞∑
j=k+1

hj

)
.

Hence, if
∑∞
k=0 hk = ∞ then P(Ak) = 0 for all k ∈ N, and the statement follows by noting

that, for ω /∈ lim infk→∞Ak , we have lim supn→∞ Ln(ω) ≥ 1.
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3.2. Proof of Theorem 2

Using Chebyshev’s inequality and a comment preceding the statement of Theorem 2, we
see that it is enough to prove that (3) implies (4) and that (18) implies (3), with

lim
n→∞ P(Zn = 0) = 1. (18)

We will use the alternative version of (3) given in Lemma 1. Let

An(j) =
n⋃
k=1

{Xk = j}

be the event that the value j appears among the first n random variables.
For the proof of the first implication, define Tn to be the number of pairs (j,m), j,m ∈ N0,

j < m, such that j does not appear among X1, . . . , Xn but m does. Note that Zn ≤ Tn.
Following the custom of identifying sets and their indicators we therefore have

Zn ≤ Tn =
∑
j<m

Ac
n(j) ∩ An(m),

which in view of the fact that

P(Ac
n(j) ∩ An(m)) = P

( n⋃
r=1

{Xr = m} ∩
⋂
k �=r

{Xk �= j}
)

≤ npm(1 − pj )
n−1

leads to the upper bound

E Tn+1 ≤ (n+ 1)
∑
j<m

pm(1 − pj )
n ≤ n+ 1

n

∞∑
j=0

ne−npj ∑
m>j

pm. (19)

We need to show that the right-hand side of (19) converges to 0 as n → ∞. Let ε > 0 be given.
From (3) and (14), there is a j0 ∈ N such that pj+1/pj ≤ ε for all j ≥ j0. Since the pj s are
positive, each of the terms ne−npj has limit 0 as n → ∞. Thus, we can further choose n0 in
dependence of ε and j0 such that, for all n ≥ n0,

j0∑
j=0

ne−npj ∑
m>j

pm ≤
j0∑
j=0

ne−npj ≤ ε.

To bound the rest of the sum, note that ifm > j > j0 then by (17) we have pm ≤ εm−j−1pj+1,
so that replacing

∑
m>j pm by pj+1/(1 − ε) will increase its value. As j �→ pj is decreasing

on {j ≥ j0}, we can next define jn by

jn := inf{j ≥ j0 : npj ≤ 1},
and, neglecting the unimportant multiplicative factor 1/(1 − ε), we split the remaining sum as

∑
j0<j<jn

npj+1e−npj +
∑
j≥jn

npj+1e−npj .
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In view of jn ≥ j0 we can bound the second sum by

ε
∑
j≥jn

npj e−npj ≤ εn
∑
j≥jn

pj ≤ εnpjn(1 + ε + ε2 + · · · ) ≤ ε

1 − ε
.

We now consider the range j0 < j < jn. Again, by (17) we have

pjn−1 ≤ εjn−1−jpj ,

so that
npj ≥ εj−(jn−1)npjn−1 > 1,

where the last inequality follows from the definition of jn and the fact that the exponent is
nonpositive in our range of js. Since the function xe−x is decreasing for x > 1, we have

npj exp(−npj ) ≤ εj−(jn−1)npjn−1 exp(−εj−(jn−1)npjn−1),

and, therefore,∑
j0<j<jn

npj+1 exp(−npj ) ≤ ε
∑

j0<j<jn

npj exp(−npj )

≤ ε
∑

j0<j<jn

εj−(jn−1)npjn−1 exp(−εj−(jn−1)npjn−1)

≤ ε
∑
k≥0

ε−knpjn−1 exp(−ε−knpjn−1)

≤ ε

(
exp(−1)+

∫ ∞

0
ε−xnpjn−1 exp(−ε−xnpjn−1) dx

)
.

Changing variables to y = ε−xnpjn−1 leads to the value exp(−npjn−1)/ log(1/ε) for the
integral. This completes the proof that (3) implies (4).

For the proof that (18) implies (3), we first note that Zn ≥ 1 on

Ac
n(j) ∩ An(j + 1) ∩ {mn < j} ⊃ Ac

n(j) ∩ An(j + 1) ∩ An(0), j ≥ 1,

so that
P(Zn ≥ 1) ≥ P(Ac

n(j) ∩ An(j + 1))− P(Ac
n(0))

= P(Ac
n(j))− P(Ac

n(j) ∩ Ac
n(j + 1))− (1 − p0)

n

= (1 − pj )
n − (1 − pj − pj+1)

n − (1 − p0)
n.

Suppose now that (3) does not hold. Then, by Lemma 1, pj+1/pj does not converge to 0 as
j → ∞, so we can find a δ > 0 and an increasing sequence (jk)k∈N ⊂ N such that

pjk+1

pjk
≥ δ for all k ∈ N,

and with nk := 1/pjk� we would obtain

lim sup
n→∞

P(Zn ≥ 1) ≥ lim inf
k→∞ ((1 − pjk )

nk − (1 − pjk − pjk+1)
nk − (1 − p0)

nk )

≥ e−1 − e−1−δ

> 0,

which contradicts (18).
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3.3. Proof of Theorem 5

Let (Ei)i∈N be a sequence of independent, standard exponential random variables. It is well
known that geometric random variables can be obtained from exponentially distributed random
variables by discretization. The sequence (Xi)i∈N we are interested in is equal in distribution
to the sequence (φp(Ei))i∈N (see (10)). Next, let E(n:i), 1 ≤ i ≤ n, be the (ascending) order
statistics associated with the first n of the E-variables, i.e.

E(n:1) < E(n:2) < · · · < E(n:n), {E(n:i) : i = 1, . . . , n} = {Ei : i = 1, . . . , n}.
By the Sukhatme–Rényi representation (see, e.g. [10, p. 721]),

L((E(n:1), . . . , E(n:n))) = L((Vn, Vn + Vn−1, . . . , Vn + · · · + V1))

for all n ∈ N, with (Vi)i∈N as in Subsection 2.2. Applying φp to the components of these
vectors we obtain a representation for the order statistics associated with the first nX-variables.
These in turn give the elements of An in increasing order, after an obvious reduction step that
does not change the gaps. With Wl,n as defined in Subsection 2.2 we therefore have

L((X(n:1), . . . , X(n:n))) = L((φp(Wn,n), . . . , φp(W1,n))),

which implies that the variable Ln in the theorem has the same distribution as

L′
n := max{φp(Wl,n)− φp(Wl+1,n) : l = 1, . . . , n− 1}. (20)

It should be noted that this representation refers to the individual random variables only and
not to any joint distributions of more than one of the Lns.

From (10), it follows that

x − c(p) ≤ c(p)φp(x) ≤ x,

so that
Vl − c(p) ≤ c(p)(φp(Wl,n)− φp(Wl+1,n)) ≤ Vl + c(p).

Using (20), we now obtain (11).
For the proof of the second part of the theorem, we first note that (see (10))

c(p)(φp(x)+ ψp(x)) = x for all x ∈ R,

which gives

c(p)(φp(Wl,n)− φp(Wl+1,n)) = Vl + c(p)(ψp(Wl+1,n)− ψp(Wl,n)).

Suppose now that ψp(log nm) → η. The limiting random variables Zl,∞, l ∈ N, have
continuous distribution functions. Since ψp(x + c(p)k) = ψp(x) for all k ∈ Z and as both
functions are continuous outside the countable set c(p)Z, we obtain, with probability 1,

ψp(Wl,nm) = ψp(Zl,nm + c(p)ψp(log nm)) → ψp(Zl,∞ + c(p)η)

asm → ∞. Together with an elementary analytic argument about maxima and limits this gives
the second assertion of the theorem.

Finally, we note that the maximum in (12) is taken over quantities of the form

a + {b} − {a + b},
which is equal to either �a� or a�. This substantiates the remark following Theorem 5 and
also leads to the upper bound in (13). The lower bound in (13) follows immediately from the
lower bound in (11) and the weak convergence.
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3.4. Proof of Theorem 6

As in the proof of (12), we find that the limiting probability that the longest gap arises as the
difference between the two largest sample values is equal to the probability of the event

Ap,η := {R1,p,η ≥ Rl,p,η for all l ≥ 2}
with

Rl,p,η := c(p)−1Vl + ψp(Zl+1,∞ + c(p)η)− ψp(Zl,∞ + c(p)η).

Once again, using the continuity of the respective distribution functions, this leads to

lim
p→0

P(Ap,η) = P(V1 > Vl for all l ≥ 2)

= P(V1 > M2,∞)

=
∫ ∞

0
e−x

∞∏
k=2

(1 − e−kx) dx

=
∫ ∞

0
(P(M2,∞ ≤ x)− P(M1,∞ ≤ x)) dx

=
∫ ∞

0
(P(M1,∞ ≥ x)− P(M2,∞ ≥ x)) dx

= EM1,∞ − EM2,∞.

The numerical evaluation of the integral in the third line is straightforward.

3.5. Proof of Theorem 3

We recall the definition of the quantile functionF−1 associated with a distribution functionF ,

F−1(y) = inf{x ∈ R : F(x) ≥ y}, 0 < y < 1. (21)

It is well known that the random variable Y = F−1(U) has distribution function F if U is
uniformly distributed on the unit interval. Similarly, Y = �(V ), with

�(y) := F−1(1 − e−y), y > 0,

has distribution F if V is exponentially distributed with mean 1. We need an auxiliary result.

Lemma 2. If (5) holds then

lim
w→∞(�(w + v)−�(w)) = ∞ for all v > 0. (22)

Proof. We have

�(w + v)−�(w) = F−1(1 − e−ve−w)− F−1(1 − e−w),

which means that (22) follows once we have shown that, for all η < 1 and a > 0, there exists
a y0 > 0 such that, for all y ≤ y0,

F−1(1 − ηy) ≥ F−1(1 − y)+ a. (23)
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Now suppose that η and a are given. Choose δ = δ(η, a) > 0 such that∣∣∣∣ log η

log(1 − δ)

∣∣∣∣ > a + 1. (24)

Because of qk+1/qk → 1 as k → ∞, we can further choose k0 = k0(δ) such that

qk+1

qk
≥ 1 − δ for all k ≥ k0.

Now set y0 := qk0+1. We claim that, with these choices,

inf{k : qk+1 ≤ ηy} ≥ inf{k : qk+1 ≤ y} + a for all y ≤ y0. (25)

By the definition of the quantile function, (21), this would imply (23).
For the proof of (25), we set k1 = k1(y) := inf{k : qk+1 ≤ y}. Clearly, qk1 > y and k1 ≥ k0

in view of qk1+1 ≤ y ≤ y0 = qk0+1. Hence, for all l ∈ N,

qk1+l+1 = qk1

l∏
j=0

qk1+j+1

qk1+j
≥ y(1 − δ)l+1,

so that, for qk1+l not to exceed ηy, we need (1 − δ)l+1 ≤ η. From this, (25) follows by using
(24).

With the exponential quantile function � and the Sukhatme–Rényi representation (see
Subsection 3.3), we find that the gap between the maximum and the second largest of the
first n of the X-variables, and, hence, the length of the longest gap, is bounded from below by

�(W2,n + V1)−�(W2,n)− 1,

withW2,n and V1 as defined in Section 2. In the representation we have V1 > 0 andW2,n → ∞
as n → ∞, both with probability 1. This, together with Lemma 2, yields the assertion of the
theorem.

3.6. Proof of Theorem 4

We first note that Yn is 1 less than

∞∑
j=0

Ac
n(j) ∩ An(j + 1)

(the extra 1 being for the smallest value in the sample), and the probability of the latter event is

(1 − pj )
n − (1 − pj − pj+1)

n.

Furthermore,

e−npj − (1 − pj )
n ≤ e

2
p2
j ne−npj ≤ pj

2
,

as xe−x ≤ e−1 for x ≥ 0. It follows that the difference between

∞∑
j=0

((1 − pj )
n − (1 − pj − pj+1)

n) and
∞∑
j=0

e−pjn(1 − e−pj+1n)



Gaps in discrete random samples 1051

is O(1), so it suffices to approximate the latter sum. Under our assumptions, it is of the same
order as ∞∑

j=1

e−n/jα (1 − e−n/(j+1)α ) =
∞∑
j=1

e−n/jα (1 − e−n/jα )

+
∞∑
j=1

(e−n/jα − e−n/(j+1)α )e−n/jα .

The second sum is (termwise) nonpositive and bounded below by

∞∑
j=1

(e−n/jα − e−n/(j+1)α ) ≥ −1,

by telescoping. Regarding the first sum as a Riemann approximation to the integral∫ ∞

1
e−n/xα (1 − e−n/xα ) dx

and changing variables to y = n/xα , we see that it is asymptotic to

n1/α

α

∫ ∞

0

e−y

y1+1/α (1 − e−y) dy

as n → ∞. Replacing the Riemann sum by the integral introduces an O(1) error since
e−y(1− e−y) is bounded for y ≥ 0, increasing up to y0 = ln 2 and decreasing afterwards. This
gives (6).
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