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Abstract

We generalize Banach’s matchbox problem: demands of random size are made on one
of two containers, both initially with content t , where the container is selected at random
in the successive steps. Let Zt be the content of the other container at the moment when
the selected container is found to be insufficient. We obtain the asymptotic distribution
of Zt as t → ∞ under quite general conditions. The case of exponentially distributed
demands is considered in more detail.
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At times n = 1, 2, . . . , a demand of random sizeWn > 0 needs to be satisfied. We have two
containers,A andB, initially filled to capacity t . At each time one of these is chosen at random.
We are interested in the distribution of the content Zt of the other container once the content of
the chosen container is found to be insufficient. Formally, we have a sequence (Hi,Wi), i ∈ N,
of independent and identically distributed two-dimensional random vectors, with independent
components and P(Hi = 0) = P(Hi = 1) = 1

2 (here Hi = 1 means that we choose container
A in the ith step). Let µ be the distribution of W := W1.

With µ concentrated at the single value 1, this is Banach’s matchbox problem; see Feller
(1968). Replacing the smoking habit by a drinking habit we may imagine a person carrying
two bottles of size t in his right and left pocket, repeatedly choosing one of them at random,
and then taking a swig of random size.

Over the years, Banach’s matchbox problem and its generalizations have been analyzed by
various authors. Holst (1989) gave an approach based on Poisson process embedding. The
problem also arises in connection with paired comparisons; see Uppuluri and Blot (1974)
and the references given therein for statistical applications. Cacoullos (1967) considered a
generalization with more than two boxes; again, the problem is put into a statistical context.
Berghahn (1966) considered the above set-up withµ an exponential distribution, and he derived
various explicit series representations. Another generalization, which lets the choice depend on
the content of the containers, is known as the toilet paper problem or the transparent matchbox
problem; see Knuth (1984) and Stirzaker (1988).
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It is helpful to regard the overall procedure as a two-dimensional random walk (Sn)n∈N0 ,
where

S0 ≡
(
0

0

)
and Sn :=

(
SA,n

SB,n

)
for n ∈ N,

with

SA,n :=
n∑

i=1

HiWi and SB,n :=
n∑

i=1

(1 − Hi)Wi;

the latter two terms denote the total demand made up to time n on A and B respectively. If
notationally convenient, we will write SA(n) and SB(n) instead of SA,n and SB,n. The random
walk is stopped as soon as it leaves the square [0, t] × [0, t]. Formally, τt := τA,t ∧ τB,t with

τA,t := inf{n ∈ N : SA,n > t}, τB,t := inf{n ∈ N : SB,n > t}.
As the support of the step distribution of the random walk is contained in the set {0}× [0,∞)∪
[0,∞) × {0}, either τt = τA,t or τt = τB,t . Then

Zt :=
{
t − SB(τA,t ) if τt = τA,t ,

t − SA(τB,t ) if τt = τB,t ,

and

Rt :=
{
SA(τA,t ) − t if τt = τA,t ,

SB(τB,t ) − t if τt = τB,t ,

denote, respectively, the content of the other container and the part of the current demand that
remains to be satisfied, both at the moment that the amount in the chosen container is found to
be insufficient.

In our first theorem, we obtain the distributional asymptotics ofZt as t → ∞. For Banach’s
matchbox problem, this has already been done by Uppuluri and Blot (1974); see also Holst
(1989). Throughout, we assume thatµhas finite secondmoment. Wewrite ‘

D−→’for convergence
in distribution and ‘

D=’for equality in distribution. Also,Z ∼ N(a, b)means thatZ is a normally
distributed random variable with mean a and variance b.

Theorem 1. With σ 2 := 2 E(W 2)/E(W) we have

t−1/2Zt
D−→ |Z| as t → ∞, with Z ∼ N(0, σ 2).

Proof. Let η0 := 0 and ηn := inf{i > ηn−1 : Hi = 1} for n ∈ N, and let

Xn := Wηn, Yn :=
ηn−1∑

k=ηn−1+1

Wk

for n ∈ N. Thus, (Xn)n∈N is the sequence of demands made from containerA or, in the random
walk interpretation, of the moves towards the right, while (Yn)n∈N is the sequence of successive
total demands from container B between two choices of container A or, in the random walk
interpretation, the sums of the steps in the upward direction between two single steps towards
the right. As usual, we take an empty sum to have the value 0, which arises in the present
context if container A is chosen first and whenever there are two successive steps towards the
right.
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The random variables X1, X2, X3, . . . , Y1, Y2, Y3, . . . are independent, and Xn has distri-
bution µ for all n ∈ N. The common distribution of the Y-variables is that of a random sum
of terms with distribution µ, where the number of terms has the same distribution as η1 − 1,
which is the geometric distribution with parameter 1

2 . In particular,

E(Yn) = E(η1)E(W) = E(W), var(Yn) = E(W 2) + (E(W))2.

Now let

Tn :=
n∑

k=1

(Yk − Xk) for n ∈ N.

This results in yet another sequence of independent and identically distributed randomvariables,
with mean and variance given by

E(Yk − Xk) = 0, var(Yk − Xk) = 2 E(W 2).

Hence the central limit theorem can be applied, leading to

n−1/2Tn
D−→ T as n → ∞, with T ∼ N(0, 2 E(W 2)).

Now let (Nt )t≥0 be the renewal process associated with the X-variables, i.e.

Nt := sup

{
n ∈ N0 :

n∑
k=1

Xk ≤ t

}
.

It is known that Nt/t converges to the constant 1/E(X1) in probability as t → ∞. This result,
together with other renewal theoretic facts that we need below, can be found in Chapter XI of
Feller (1971). We thus have

TNt+1√
t

=
√

Nt + 1

t

TNt+1√
Nt + 1

D−→ T√
E(W)

as t → ∞

by Anscombe’s theorem; see for example Chung (1974, p. 216). Let Vt := SB(τA,t ) be the
y-coordinate of the two-dimensional random walk once the x-coordinate has crossed the level
t . Then we have

1√
t
(Vt − t) = 1√

t

(Nt+1∑
k=1

Yk − t

)
= 1√

t
TNt+1 − 1√

t
Lt ,

where

Lt :=
Nt+1∑
k=1

Xk − t = SA(τA,t ) − t

denotes the residual waiting time at time t associated with the renewal process (Nt )t≥0. It is
known that Lt converges in distribution as t → ∞ in the nonlattice case; in the lattice case,
t would need to be restricted to the multiples of the lattice width. In either case, (Lt )t≥0 is
stochastically bounded, which implies that Lt/

√
t → 0 in probability as t → ∞.

Putting pieces together we see that

Vt − t√
t

D−→ Z as t → ∞,
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with Z ∼ N(0, σ 2), and σ 2 as in the statement of Theorem 1. It remains to relate Zt to Vt . We
have Zt = t −Vt on {τt = τA,t }, where τt = τA,t is equivalent to Vt ≤ t . The symmetry of the
step distribution of the two-dimensional random walk (Sn)n∈N0 ,(

HiWi

(1 − Hi)Wi

)
D=

(
(1 − Hi)Wi

HiWi

)
,

implies that
P(Zt ≤ z, τt = τA,t ) = P(Zt ≤ z, τt = τB,t ),

so that
P(Zt ≤ z) = 2 P(Zt ≤ z, τt = τA,t ) = 2 P(t − z ≤ Vt ≤ t)

for 0 ≤ z ≤ t .

We now consider the probability that the remaining part of the demand from the empty
container cannot be satisfied from the other container. Using the notation introduced above,
we can write this as

ψ(t) := P(Zt < Rt).

As a corollary to Theorem 1 we obtain limt→∞ ψ(t) = 0 since, with the notation introduced
in its proof,

ψ(t) = P(Zt < Rt , τt = τA,t ) + P(Zt < Rt , τt = τB,t )

= 2 P(Vt ≤ t < Vt + Lt)

= 2 P(Vt ≤ t) − 2 P(Vt + Lt ≤ t)

= 2 P
(
t−1/2(Vt − t) ≤ 0

) − 2 P
(
t−1/2(Vt − t) − t−1/2Lt ≤ 0

)
→ 1

2 − 1
2 = 0 as t → ∞,

where we have used symmetry and Rt = Lt on {τt = τA,t } in the second step and Lt/
√
t → 0

in probability in the last step.
Our second theorem gives an explicit representation for ψ in the case of exponentially

distributed demands. We write Exp(λ) for the exponential distribution with parameter λ.

Theorem 2. If µ = Exp(λ), then

ψ(t) = e−λt
∞∑
n=0

1

n! n!
(
λt

2

)2n

.

Proof. Rescaling if necessary, we may assume that λ = 1. We continue to use the notation
introduced in the proof of Theorem 1. In the case µ = Exp(1) the residual waiting time Lt

has distribution Exp(1) and is independent of Nt , which in turn has a Poisson distribution with
parameter t . Given Nt = n, we can write Vt as the sum of n+ 1 independent random variables
that are in turn random sums of independent random variables with distribution Exp(1), where
the number of terms has a geometric distribution with parameter 1

2 . Hence Vt is then a random
sum, where the numberKt of terms has a negative binomial distribution with parameters n+ 1
and 1

2 . In particular,

P(Nt = n,Kt = k) = e−t t
n

n!
(
k + n

n

)
1

2n+k+1 .
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If Kt = k, then the distribution of Vt is gamma with parameters k and 1, hence Vt + Lt has a
gamma distribution with parameters k + 1 and 1. Conditionally on Nt = n and Kt = k, the
event that Vt ≤ t < Vt + Lt can therefore be seen as the event that there are exactly k points
in the time interval [0, t] in a unit rate Poisson process, and hence

P(Vt ≤ t < Vt + Lt | Nt = n,Kt = k) = e−t t
k

k! .

This yields

ψ(t) = 2 P(Vt ≤ t < Vt + Lt)

= 2
∞∑
n=0

∞∑
k=0

P(Vt ≤ t < Vt + Lt | Nt = n,Kt = k)P(Nt = n,Kt = k)

= 2
∞∑
n=0

∞∑
k=0

e−t t
k

k!e
−t t

n

n!
(
k + n

n

)
1

2n+k+1

= e−2t
∞∑
n=0

∞∑
k=0

tn+k

2n+k

(k + n)!
n! n! k! k!

= e−2t
∞∑
n=0

1

n! n!
∞∑
k=n

tk

2k
k!

(k − n)! (k − n)!

= e−2t
∞∑
k=0

tk

2k
1

k!
k∑

n=0

(
k

n

)2

= e−2t
∞∑
k=0

(2t)k

k!
1

22k

(
2k

k

)
.

Note that
1

22k

(
2k

k

)
= E(Uk),

where the distribution of the random variableU is beta with parameters p = q = 1
2 . Thus, ifM

is a random variable which has the Poisson distribution with parameter 2t and is independent
of U , then

ψ(t) = E(UM) = E(e2t (U−1)) = e−t E(e−t (1−2U)).

Due to the symmetry of the distribution of 1− 2U about 0, the odd moments of 1− 2U vanish.
Using the fact that (1 − 2U)2

D= U , we obtain

ψ(t) = e−t
∞∑
n=0

t2n

(2n)! E(U
n)

= e−t
∞∑
n=0

t2n

(2n)!
1

22n

(
2n

n

)

= e−t
∞∑
n=0

1

n! n!
(
t

2

)2n

.
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Figure 1: The probability ψ (solid line) and its approximation (dotted line).

Recalling the definition of the modified Bessel functions,

Iν(z) :=
(
z

2

)ν ∞∑
k=0

1

+(ν + k + 1)k!
(
z

2

)2k

,

we see that ψ(t) = e−λt I0(λt). It is known that e−t Iν(t) ∼ 1/
√
2πt as t → ∞ (see for

example Formula 9.7.1 in Abramowitz and Stegun (1964)), hence

lim
t→∞

√
tψ(t) = 1√

2πλ
.

Figure 1 shows the graph of ψ and the asymptotic approximation in the case λ = 1. It is
interesting to note that the approximation is excellent even for moderate values of t and that the
values of ψ are relatively large. If we accept a probability of 0.1 for the event that the current
demand cannot be satisfied from the other container, then we need an initial capacity that is
16.1717 . . . times larger than the mean of the individual requests. If we accept a probability of
0.01, then we arrive at a factor of about 1592.

We close with three comments. First, the technique used in the proof of Theorem 1 for
obtaining asymptotic normality of the y-position at the time that a level t is crossed in the
x-direction as t → ∞ easily generalizes to step distributions that do not satisfy the support
constraints that are natural in the storage problem considered here and may therefore be of
interest in its own right.

Second, the symmetry of the distribution of 1 − 2U about 0 and the equality in distribution
(1 − 2U)2

D= U for random beta variables U with parameters p = q = 1
2 used in the proof of

Theorem 2 yield that the mth moment of 1 − 2U is

m∑
k=0

(
m

k

)
(−1)k

2k

(
2k

k

)
=



0 if m is odd,
1

2m

(
m
1
2m

)
if m is even.

This identity is known as ‘Knuth’s old sum’; see Prodinger (1994).
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Third, the result of Theorem 2 may be written as ψ(t) = P(ÑA,t = ÑB,t ), where ÑA and
ÑB denote the thinned Poisson processes in the A- and B-direction respectively that arise if
we delete those points of the original Poisson processes that are not connected to a change in
direction of the two-dimensional random walk. It would be interesting to have a probabilistic,
‘noncomputational’ proof of Theorem 2 that exploits this representation.
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