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Summary: We consider the problem of estimating the size of a random digital search tree on
the basis of the maximal node depth observed along a specific path. We show that the maximum
likelihood estimator exists and we investigate its properties. A similar problem arises in the context
of approximate counting. In both cases a simple pure birth process plays a central role. We also
construct confidence bounds.

1 Introduction
Let (Xn)n∈N0 be a pure birth process with start at 0 and

P(Xn+1 = k + 1 | Xn = k) = 2−k for all k ∈ N0. (1.1)

This simple structure arises in connection with search trees and approximate counting. In
the first application Xn is the depth of the first free node along a specific path of a random
binary tree generated by the digital search tree (DST) algorithm from uniform random
input of size n; see [Ma92] and [SF96] and the references given there for a detailed
description of the algorithm and its properties. From the large number of papers dealing
with the DST algorithm [Lo87] and [DG07] are the most relevant for our present purposes.
In the second application we have a counter that is incremented at random: If its current
value is k then, independently on each arrival, it is increased by 1 with probability 2−k,
and Xn is the value of the counter after n arrivals. Again, there is a considerable amount
of related literature: The basic idea appears in [Mo78]. A first detailed analysis was
given in [Fl85]; extensions and related results have been discussed in [KP91], [Pr94], and
elsewhere.

In the present paper we regard n as an unknown parameter. We consider statistical
inference for n, where the data consists of the current value k of the process. In terms of
the above applications we are therefore interested in estimation of the size of the tree on
the basis of the observed level of the external node along a specific path (or, equivalently,
its depth along this path), or the estimation of the total number of events on the basis

AMS 2000 subject classification: Primary: 62F10; Secondary: 60J10, 62F25, 68Q25
Key words and phrases: Birth process, confidence intervals, digital search tree algorithm, limit distribution,
maximum likelihood estimation
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264 Dennert -- Grübel

of the current value of the counter. We suggest to use the likelihood principle. In the
estimation context this leads to the maximum likelihood estimator, which we discuss
in the next section. Section 3 compares the maximum likelihood estimator with a well-
known unbiased estimator for n. In the last section we consider confidence intervals for n.
Throughout, the approach that we suggested in [DG07], which is to consider the birth
process as a nonhomogeneous renewal process, turns out to be useful.

2 The maximum likelihood estimator
In the context of point estimation the likelihood principle leads us to estimate the param-
eter n by the value n̂(k) that maximizes the likelihood function. In the discrete case this
is the probability of the observed value k as a function of n,

L(n|k) = P(Xn = k).

It is enough to consider k ∈ N and n ≥ k. Numerical evaluation of L can be based on the
simple recursion

L(n|k) = 2−k+1L(n − 1|k − 1) + (1 − 2−k)L(n − 1|k), (2.1)

which is a direct consequence of (1.1). The recursion starts with

L(n|1) = 21−n for all n ∈ N. (2.2)

We mention in passing that these values are all binary rationals so that they can in principle
be evaluated without errors by representing the numbers involved as finite sequences of
0’s and 1’s.

As in [DG07] a key to our analysis is the interpretation of (Xn)n∈N0 as the counting
process associated with a sequence of independent random variables (Yk)k∈N, where
Yk has a geometric distribution with parameter 21−k (for k = 1 we take this to be the
distribution concentrated on the single value 1). This is possible for every pure birth
process: Only transitions k → k + 1 are allowed, so the Markov chain is specified by its
holding times Yk in state k − 1. Let Sk := ∑k

l=1 Y j . We then have

P(Xn ≥ k) = P(Sk ≤ n) for all n, k ∈ N, (2.3)

an argument also known as renewal inversion.

Lemma 2.1 With the notation introduced above,

L(n|k) = 2k P(Sk+1 = n + 1) for all n, k ∈ N. (2.4)

Proof: We have

P(Xn = k) = 2k P(Xn+1 = k + 1, Xn = k)

= 2k P(Xn < k + 1 ≤ Xn+1)

= 2k (
P(Xn+1 ≥ k + 1) − P(Xn ≥ k + 1)

)
= 2k (

P(Sk+1 ≤ n + 1) − P(Sk+1 ≤ n)
)

= 2k P(Sk+1 = n + 1).
�
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Size estimation and approximate counting 265

Hence, apart from a multiplicative factor depending on k, the likelihood function is
equal to the probability mass function of Sk+1, where Sk is the entry time into state k.
From this it follows immediately that a maximizing value exists; our first theorem shows
that it is also unique.

Theorem 2.2 For each k ∈ N there is a unique n̂(k) ∈ N such that

L(n̂(k)|k) ≥ L(n|k) for all n ∈ N.

Proof: For k = 1 this is immediate from (2.2). We now assume that k > 1.
The law of Sk+1 is the convolution of geometric distributions and hence strongly

unimodal; see Chapter 4 in [DJ88]. As a consequence, n → P(Xn = k) is weakly
increasing for n = 1, . . . , n0 and weakly decreasing on n ≥ n0, where n0 depends on k.
Now suppose that the maximum likelihood estimate is not unique. Then in view of the
unimodality we would have P(Sk = n) = P(Sk = n + 1) for some k ∈ N, n ≥ k. Using

M(n, k) := {( j2, . . . , jk) ∈ Nk−1 : 1 + j1 + · · · + jk = n}
and Y1 ≡ 1 we obtain

P(Sk = n) =
∑

( j2,..., jk)∈M(n,k)

P(Y2 = j2, . . . , Yk = jk)

=
∑

( j2,..., jk)∈M(n,k)

k∏
m=2

21−m(1 − 21−m) jm−1

= 2−k(k−1)/2
∑

( j2,..., jk)∈M(n,k)

2− ∑k
m=2(m−1)( jm−1)

k∏
m=2

(2m−1 − 1) jm−1.

Note that the final product is an odd integer, and that
∑k

m=2(m − 1)( jm − 1) achieves its
unique maximum on M(n, k) for j2 = · · · = jk−1 = 1, jk = n − k + 1. For the binary
expansion of P(Sk = n) this means that there is a final 1 in position

k(k − 1)/2 + (k − 1)(n − k) = (k − 1)(n − k/2).

In the step from n to n + 1 this position moves k − 1 steps to the right, which means that
P(Sk = n) and P(Sk = n + 1) are different. �

Table 2.1 gives in its third column the maximum likelihood estimator n̂(k) for various
k-values, obtained via (2.1). The second column lists the values of an unbiased estimator;
see the next section. The fourth column contains the associated ratios. (Here and in the
following real numbers are rounded to the given level.) These suggest that asymptotically
the maximum likelihood estimator is a constant multiple of the unbiased estimator.

For the investigation of this phenomenon we need the asymptotic behaviour of the
random variable Xn . It has been observed by [Lo87] in the context of digital search trees
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266 Dennert -- Grübel

k 2k − 1 n̂(k) n̂(k)/(2k − 1)

5 31 39 1.258065

8 255 325 1.274510

10 1023 1306 1.276637

14 16383 20925 1.277239

17 131071 167415 1.277285

Table 2.1 Values of the estimators.

and by [Fl85] in the context of approximate counting that there are small fluctuations in
the distribution (resp. its moments) of Xn − �log2 n	 as n → ∞. In [DG07] the possible
limit points were related to the discretized shifts of one specific random variable. We
need some properties of this random variable. For this, let Zk, k ∈ N, be independent and
exponentially distributed with parameter 1 and let

S∞ :=
∞∑

k=1

2−k Zk. (2.5)

It is easy to see that the series converges with probability 1 to a finite value. One of the
results in [Lo87] is an explicit formula for the distribution function of S∞,

P(S∞ ≤ x) = 1 −
∞∑

k=1

ak exp(−2kx), (2.6)

with

ak := b
k−1∏
j=1

(1 − 2 j)−1 for all k ∈ N, and b :=
∞∏
j=1

(1 − 2− j)−1.

An alternative derivation is given in [DG07]. In view of the rapid decrease of the coef-
ficients ak this representation as a ‘pseudo mixture’ (note that the coefficients alternate
in sign) can be used to obtain the values of the distribution function numerically; this is
used in connection with Figure 3.1 below.

Theorem 2.3 The random variable S∞ has a density f∞ that is strictly increasing on
(0, ζ) and strictly decreasing on (ζ,∞) for some ζ > 0.

Proof: The definition (2.5) displays the distribution of S∞ as the weak limit of convo-
lutions of exponential distributions. It therefore follows from the results in Section 1.4
of [DJ88] that the distribution S∞ is strongly unimodal, which means that it has a density
f∞ that is increasing on (0, ζ) and decreasing on (ζ,∞) for some ζ ≥ 0. The smoothing
effect of the convolution product yields limt→0 f∞(t) = 0, hence we must have ζ > 0.
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Size estimation and approximate counting 267

From the representation (2.6) it follows that f∞ can be extended analytically into the
complex half-plane {z ∈ C : �(z) > 0}. Suppose now that the mode of f∞ is not unique.
Then unimodality would imply that f ′∞ vanishes on some interval of positive length in
this half-plane which in turn would lead to f ′∞ ≡ 0; this cannot possibly be the case for
a probability density f∞. The same argument shows that f∞ is in fact strictly increasing
on (0, ζ) and strictly decreasing on (ζ,∞). �

The mode ζ of the distribution of S∞ can be evaluated numerically as

ζ = 0.63864361· · ·.
Our next result confirms the conjecture that we derived from the values in Table 2.1.

Theorem 2.4 As n → ∞, n̂(Xn)/(2Xn − 1) converges in probability to the constant
value 2ζ (= 1.27728722· · ·).

Proof: We know from the proof of Theorem 2.2 that the distribution of Sk has a unique
mode ζk and that n̂(k) = ζk+1. It is therefore enough to show that

lim
k→∞ 2−kζk = ζ. (2.7)

From Lemma 1 in [DG07] and the discussion in Section 3 of [DG07] we obtain that
2−kSk converges in distribution to S∞, with S∞ as in (2.5). For the distribution functions
Fk of 2−kSk and F∞ of S∞ this means that

lim
k→∞ sup

x≥0

∣∣Fk(x) − F∞(x)
∣∣ = 0. (2.8)

We next introduce a smoothed version of the discrete distributions: For each k ∈ N let F̃k
be the distribution function of S̃k := 2−k(Sk + U), where U and Sk are independent and
U is uniformly distributed on the unit interval. Clearly, with ζ̃k a mode of the distribution
of S̃k, we have that ζ̃k and 2−kζk differ by at most 2−k, so that (2.7) will follow if we can
show that ζ̃k converges to ζ as k → ∞. Also, as F̃k arises by linear interpolation from
Fk , which is of pure jump type, we have (2.8) with F̃k instead of Fk too.

Now let ε > 0 be given and suppose that ζ̃n < ζ − ε for all n ∈ A for some infinite
set A ⊂ N. Let

x0 := ζ − ε, x1 := ζ − ε

2
, x2 := ζ,

and define κ by

κ := F∞(x0) + 1

2

(
F∞(x2) − F∞(x0)

) − F∞(x1). (2.9)

As f∞ is strictly increasing on (x0, x2) we must have κ > 0. Note that κ depends on ε.
Now let δ := κ/4 and let k0 be such that

sup
x≥0

∣∣F̃k(x) − F∞(x)
∣∣ ≤ δ for all k ≥ k0. (2.10)
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268 Dennert -- Grübel

For any k ∈ A with k ≥ k0 we have that F̃k is concave on (x0, x2), which together with
(2.10) and (2.9) implies

F̃k(x1) ≥ F̃k(x0) + 1

2

(
F̃k(x2) − F̃k(x0)

)
≥ F̃k(x0) + 1

2

(
F∞(x2) − F∞(x0) − 2δ

)
≥ F∞(x0) + 1

2

(
F∞(x2) − F∞(x0)

) − 2δ

= F∞(x1) + κ − 2δ

> F∞(x1) + δ,

which contradicts (2.10).
Put together this shows that lim infk→∞ 2−kζk ≥ ζ − ε for all ε > 0. We now let ε

tend to 0, and a final symmetry argument concludes the proof. �

3 Comparison with the unbiased estimator
It has been noted long ago that 2Xn − 1 is an unbiased estimator for n, but it is also well
known that unbiasedness on its own can lead to suboptimal procedures; see e.g. Section 8.2
in [CH74]. Further, it is part of the statistical folklore that maximum likelihood estimators
are asymptotically optimal ‘in smooth cases’. Note, however, that in the standard setup n is
the sample size and not, as in the present situation, a parameter. In particular, the estimators
do not stabilize: Indeed, we use one single integer value k to estimate a parameter that is
roughly of magnitude 2k. As we have seen in the previous section, maximum likelihood
leads to a procedure that estimates n by a value that is about 28% larger than the value
given by the unbiased estimator. For an understanding of this phenomenon on an informal
level we mention that in the tree context the estimator 2k − 1 is the number of nodes
of the tree that has all its external nodes at the level observed on that particular path.
While random trees generated by the DST algorithm tend to be fairly balanced the rapid
increase of k �→ 2k forces the estimator to become small if it is to be unbiased. Note that
log2(2

Xn − 1) is not an unbiased estimator for log2 n.
We now consider the probability that the estimator is less than or equal to the parame-

ter to be estimated: Asking for this to be equal to 1/2 would lead to median-unbiasedness,
a property that would not be destroyed by monotone transformations. We require the
asymptotic distributional behaviour of Xn as n → ∞. This problem was solved in [Lo87],
who discovered the fact that we have to pass to subsequences in order to obtain conver-
gence in distribution; see also [Fl85] in the context of approximate counting. In [DG07]
a representation of the limit points was obtained: If (n(m))m∈N is a sequence of integers
such that

lim
m→∞ n(m) = ∞ and lim

m→∞{− log2 n(m)} = η, (3.1)

where {x} denotes the fractional part of x ∈ R, then

Xn(m) − log2 n(m) →distr Zη := �− log2 S∞ + η	 − η (3.2)
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Size estimation and approximate counting 269

with m → ∞. Here we have written Yn →distr Y∞ for convergence in distribution of the
random variables Yn to Y∞ as n → ∞, and S∞ is as in (2.5). For the two competing
estimators this leads to

log2
(
2Xn(m) − 1

) − log2 n(m) →distr Zη, (3.3)

log2
(
n̂(Xn(m))

) − log2 n(m) →distr Zη + 1 + log2 ζ. (3.4)

From this and the explicit description of the distribution of S∞ given in (2.6) we can
evaluate the limit of the probability that the unbiased estimator or maximum likelihood
estimator is less than the parameter to be estimated. In particular, if (3.1) is satisfied,
some standard manipulations lead to

lim
m→∞ P

(
2Xn(m) − 1 ≤ n(m)

) = P(S∞ > 2η−1), 0 ≤ η < 1,

for the unbiased estimator and

lim
m→∞ P

(
n̂(Xn(m)) ≤ n(m)

) =
{

P(S∞ > 2η−1), if η ≥ 1 + log2 ζ,

P(S∞ > 2η), if η < 1 + log2 ζ,

for the maximum likelihood estimator. The left part of Figure 3.1 shows the limit proba-
bilities as a function of η. It turns out that for small values of η, i.e. when the parameter is
just a bit larger than an integer power of 2, the probability that the unbiased estimator is
too small will be rather high (about 0.8). The corresponding probability for the maximum
likelihood estimator is closer to 1/2 for such values. On the interval [1+ log2 ζ, 1) the two
curves coincide. The maximum deviation from the value 1/2, which would correspond
to median-unbiasedness, is 0.326327 for the unbiased estimator and 0.2504908 for the
maximum likelihood estimator.
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Figure 3.1 Comparison of the unbiased and the maximum likelihood estimator (see text).

Similarly, the right part of Figure 3.1 shows the limiting probability that the maximum
likelihood estimator is closer to the parameter than the unbiased estimator, again as
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a function of η. Again, this can be evaluated from the above limit relations (3.2) and (3.3):
If (3.1) is satisfied, then

lim
m→∞ P

(∣∣n̂(Xn(m)) − n(m)
∣∣ <

∣∣2Xn(m) − 1 − n(m)
∣∣)

= P
(|Zη + 1 + log2 ζ | < |Zη|

)
= P

(
Zη < −c

)
=

{
P(S∞ > 2η−1), if η ≥ c,

P(S∞ > 2η), if η < c,

with c := (1+log2 ζ)/2 = 0.1765415· · ·. In the first equality we have used the continuous
mapping theorem, see [Bi68, Theorem 5.1], together with the continuity of the distribution
function of S∞. It turns out that, asymptotically, the maximum likelihood estimator
outperforms the unbiased estimator for values of η that are between 0.1765415 and
0.8036598. Hence, from a Bayesian perspective and if we put a uniform prior on {log2 n},
then the subjective probability that the maximum likelihood estimator is closer to the
parameter of interest will be about 0.6271183.

4 Confidence intervals
Regarding the birth process (Xn)n∈N0 as a non-homogeneous renewal process is also
useful in connection with confidence bounds. Let �+

α (k) and �−
α (k) be the ‘strict’ and

the ‘ordinary’ α-quantile of the distribution of Sk ,

�+
α (k) := min

{
n ∈ N : P(Sk ≤ n) > α

}
,

�−
α (k) := min

{
n ∈ N : P(Sk ≤ n) ≥ α

}
for 0 < α < 1, k ∈ N. We know from the proof of Theorem 2.2 that P(Sk ≤ n) is a binary
rational, so for the usual confidence levels α = 0.1, 0.05, 0.01 the two quantiles coincide.

The following theorem shows that the �-functions lead to one-sided confidence
bounds that are optimal in a specific sense (we do not consider randomized bounds).

Theorem 4.1 (a) A 100(1 − α)% lower confidence bound for n is given by �+
α (Xn).

Further, if 	 : N→ N is an increasing function with the property that

P
(
n ≥ 	(Xn)

) ≥ 1 − α for all n ∈ N,

then 	(k) ≤ �+
α (k) for all k ∈ N.

(b) A 100(1 − α)% upper confidence bound for n is given by �−
1−α(Xn + 1). Further,

if 	 : N→ N is an increasing function with the property that

P
(
n ≤ 	(Xn)

) ≥ 1 − α for all n ∈ N,

then 	(k) ≥ �−
1−α(k + 1) for all k ∈ N.



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a

y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e

 o
n

ly
. O

th
e

r u
s
e

 is
 o

n
ly

 a
llo

w
e

d
 w

ith
 w

ritte
n

 p
e

rm
is

s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Size estimation and approximate counting 271

Proof: For notational convenience we abbreviate �+
α to �. It follows from the properties

of the sequence (Sk)k∈N that k �→ �(k) is increasing and that limk→∞ �(k) = ∞. Hence

�−1 : N→ N, �−1(n) := min{k ∈ N : �(k) ≥ n}
is well-defined, and it is easy to check that

�−1(n) ≤ k ⇔ n ≤ �(k), �(�−1(n)) ≥ n

for all n, k ∈ N. Together with the renewal inversion argument (2.3) this leads to

P(n ≥ �(Xn)) = P(Xn < �−1(n + 1))

= P(S�−1(n+1) ≥ n + 1)

≥ P
(
S�−1(n+1) ≥ �(�−1(n + 1))

)
.

Because of

P(Sk < �+(k)) ≤ α for all k ∈ N
this implies

P(n ≥ �+(Xn)) ≥ 1 − α,

so that �+(Xn) is indeed a 100(1 − α)% lower confidence bound for n.
Now suppose that 	 satisfies the condition in the theorem. Let {ni : i ∈ A} with

n1 < n2 < · · · be the range of 	 (which may be finite) and let

ki := min{k ∈ N : 	(k) = ni}.
The above transformations with 	 instead of � and n = ni − 1 lead to P(Ski ≥ 	(ki)) ≥
1 − α and hence P(Ski ≤ 	(ki) − 1) ≤ α. In view of

P(Ski ≤ �(ki) − 1) ≤ α < P(Ski ≤ �(ki))

this implies 	(ki) ≤ �(ki) for all i ∈ A. As 	 and � are both increasing this in turn
implies 	 ≤ �.

The proof of the second part is quite similar: With � = �−
1−α we obtain

P(n ≤ �(Xn + 1)) = P(Xn + 1 ≥ �−1(n))

= P(S�−1(n)−1 ≤ n)

≥ P
(
S�−1(n)−1 ≤ �(�−1(n) − 1)

)
≥ 1 − α.

The same arguments as in the first part also provide the optimality. �

We know from Section 2 that 2−kSk converges to S∞ in distribution. By Theorem 2.3,
the limit has a continuous and strictly increasing distribution function F∞. Taken together
this implies the convergence of the quantiles, so that

lim
k→∞ 2−k�±

α (k) = Q∞(α), (4.1)
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where

Q∞(y) := inf
{
x ∈ R : F∞(x) ≥ y

}
, 0 < y < 1,

denotes the quantile function associated with the distribution of S∞. Table 4.1 contains
the values of the 90% confidence bounds for various k, together with approximations
obtained from (4.1) and Q∞(0.1) = 0.4051573, Q∞(0.9) = 1.75722. We see that the
approximate bounds are quite close to the exact bounds even for relatively small values of
k and that the approximate bounds are conservative, at least for these particular k-values.

k �+
0.1(k) 2k Q∞(0.1) �−

0.9(k + 1) 2k+1 Q∞(0.9)

5 13 12.96 110 112.46

8 104 103.72 898 899.70

10 415 414.88 3597 3598.79

Table 4.1 Confidence bounds and approximations.

As usual, the one-sided bounds can be combined to obtain confidence intervals
Iα(Xn) of the form

Iα(k) = [
�+

β (k),�−
1−α+β(k + 1)

]
,

with some β ∈ (0, α). We now assume that α < 1/2. A standard way to split the error
probability is to choose β = α/2, which results in equal-tailed confidence intervals. For
example, with α = 0.05 and k = 7 we obtain the interval [34, 627]. Note, however, that
the upper confidence bound is 538 for these values of α and k, which because of n ≥ k
would lead to the considerably shorter confidence interval [7, 538].

Depending on circumstances we might wish to choose β such that the length of
the confidence interval is as small as possible, or we might wish to minimize the ratio
of the upper and lower bound. Neither of these choices would be equivariant under
strictly increasing transformations. The likelihood approach leads naturally to the idea of
likelihood-based confidence regions, see e.g. [CH74, p. 218], where it is required that

L(n|k) ≥ L(n′|k) for all n ∈ Iα(k), n′ /∈ Iα(k). (4.2)

We know from Lemma 2.1 that n �→ L(n|k) is proportional to the probability mass
function associated with Sk+1 and we also know from the proof of Theorem 2.2 that the
distribution of Sk+1 is unimodal. This implies that (4.2) leads to regions that are in fact
intervals, as in the three other cases mentioned previously. For the maximum likelihood
confidence intervals we do have equivariance under strictly monotone transformations so
that, for example, it does not matter whether we consider n or log2 n as the quantity of
primary interest.

The distributional asymptotics (4.1) provide an approximation for β = β(α) and
hence for Iα(k) if k is large. Indeed, in the limit the requirement of minimal length or
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minimal ratio leads to the problem of minimizing

β �→ 2 · Q∞(1 − α + β) − Q∞(β),

β �→ Q∞(1 − α + β)

Q∞(β)

respectively, on the interval (0, α). For the likelihood intervals the corresponding asymp-
totic problem is that of finding 0 < x0 < x1 < ∞ such that f∞(x0) = f∞(x1) and
F∞(x1) − F∞(x0) = 1 − α. These problems can all be tackled by standard numerical
methods; again, the series representation (2.6) turns out to be useful. In Table 4.2 the re-
sulting β-values are given for some standard confidence levels. It turns out, for example,
that the shortest length intervals are close to the intervals that consist of the deterministic
lower bound and the upper 100(1 − α)% confidence bound, in agreement with the above
specific numerical example for α = 0.05 and k = 7. For the minimal ratio intervals are
closer to the equal-tailed case, maximum likelihood splits are in between.

α 0.10000 0.05000 0.01000

minimal length 0.00331 0.00128 0.00015

minimal ratio 0.05770 0.02941 0.00610

maximum likelihood 0.00856 0.00323 0.00037

Table 4.2 Asymptotic split probabilities for various confidence levels and interval types.
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