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Abstract. Given a sample from a discrete compound Poisson distribution,
we consider variants of plug-in and likelihood estimators for the corresponding
base distribution. These proceed recursively with an intermediate truncation step.
We discuss the asymptotic behaviour of the estimators and give some numerical
examples. Both procedures compare favourably with the straightforward and the
naively projected plug-in estimator that we introduced in Buchmann and Griibel
(2003, The Annals of Statistics, 31, 1054-1074).

Keywords and phrases: Compound distributions, consistency, discrete distribu-
tions, likelihood, limit distributions, plug-in principle.

Short title: Discrete decompounding



1. Introduction. Poisson counting processes with bulk arrivals appear in vari-
ous application areas such as queueing theory. They are one of the standard tools
in stochastic modelling. If a process of this type is observed at evenly spaced time
intervals then we obtain a sample from a discrete compound Poisson distribution.
Formally, let p = (pr)ren be a probability distribution on the positive integers and
let A > 0. With ‘+” denoting convolution we call the distribution ¢ = (gx)xen, on
the non-negative integers given by

the discrete compound Poisson distribution with rate parameter A and base dis-
tribution p. Distributions of this type arise quite generally as random sums: If N,
X1, X9, X3,... are independent, N Poisson with parameter A and p the probabil-
ity mass function of the X-variables, then ¢ is the probability mass function for
Zﬁzl Xm. The g-values can be obtained from A and p by an algorithm known in
insurance mathematics as Panjer recursion,

x| >

k
qgo=¢€ ", Q. = ijjqk_j for all £ € N.
j=1

Continuing the investigations in Buchmann and Griibel (2003), to which paper we
also refer for a more detailed discussion of the problem and its applications, we
consider two new estimators for the base distribution associated with a discrete
compound Poisson distribution. These are introduced in the next section, which
contains four theorems on their asymptotic behaviour. In Section 3 we give some
examples with real data, one the canonical horse kick data, the other taken from
the ecological literature. Section 4 investigates the finite sample behaviour of our
estimators for some specific distributions by simulation.

2. Results. We first recall the definition of the plug-in estimator. In Sec-
tions 2.2 and 2.3 respectively we explain and discuss the new proposals. In the
final subsection we describe a connection between the three estimators.

2.1 The plug-in estimator. In Buchmann and Griibel (2003) we introduced an
estimator which is based on the following inversion of the Panjer recursion,

k—1
qk 1 ,
A=—logqy, pr = — — — ipiqr—; forall ke N.
Ao kqo J:Zl T
Given a sample Y71,..., Y, of size n from such a distribution let ¢, = (¢n,k)reN,

. '_l . B
Ink ‘= n#{lémén.Ym_k}

be the associated empirical probability mass function. The plug-in estimators A
and p;' = (PL'y)wen for A and p are then constructed by replacing the g-entries
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in the above inversion formula by the corresponding relative frequencies g, ; in
particular,

An = —log qn.0-

Here and in the sequel we assume that ¢, o > 0 which in view of our general
assumption A > 0 will be satisfied if n is large enough. In Buchmann and
Griibel (2003) we obtained consistency and asymptotic normality for these es-
timators, but we also pointed out that the estimate for the base distribution is in
general not a probability mass function as it may contain negative entries. One
popular if crude remedy consists in replacing such negative entries by 0 and then
renormalizing to sum 1, we will refer to this as the projected plug-in estimator
Pt = (Pp'%)ken (in all estimators considered in this paper A, will be the same,
so we do not need a distinguishing superscript for the rate parameter). Note that
we risk an ambiguity in order to keep the notation compact: ¢ with a single sub-
script refers to the components of ¢ and ¢ with the further subscript n refers to
the empirical probability mass function. Below we will also use Ao, po = (Po.k)reN
and qo = (qo,k)keN, for the true parameters.

2.2 The truncated plug-in estimator. The first of our new proposals uses the
above recursion but inserts a truncation step in order to insure that the entries are
nonnegative and that their sum does not exceed the value 1. Formally, we define
the truncated plug-in estimator p;" = (P )ren, by

k—1
Pk = maX{O , min{xnvk , 1 — Zﬁfﬁ;}}
Jj=

with

Gn,k
Tnk = = - Jpn Gn k—
" )\nqn 0 an 0 Z g A a

By definition, p* is a (sub)probability mass function. Also, x, 1 < 0 when-

ever ¢, = 0 which shows that the support of the truncated plug-in estima-
tor is contained in the support of ¢,. In particular, p;5 = 0 for & > M,
max{Y7,...,Y,}, so that the recursion can always be stopped after a finite num-

ber of steps.

The following two theorems deal with the asymptotic behaviour of p;”. The
first of these shows that the truncated plug-in estimators are strongly consistent.

THEOREM 2.1 Let Ao be the true rate parameter and let po = (po.k)ren be the

true base distribution. Then A\, — Ao and Ppok — Po,k for all k € N almost surely
as n — oo.

PROOF: We proceed by induction. Since §,.0 — go,0 = e~*° and

Gn,1 qo,1 A0P0,190,0
H _ f— S —

A = = Po,1
4n,010g Gn o 0,0 1og qo,0 90,0(—Xo)

Tn1 = —
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almost surely, An and the first component of p;" are consistent. Generally,

Tnge = Yi(Gn,0,-- 5 Qnki Ppots- - Prk—1)

with
y k—1
k .
Ui (Yo, Yki 210 - oo Zh—1) 1= — - JZiYk—j-
) ) ) ) ) Yo lOg Yo kyO J_Zl J J

For yo > 0 (an assumption that is satisfied in our setup since yy corresponds to
e~0) this is a continuous function, hence consistency of gn,; for j =0,...,k and
Pp; for j=1... k—1 implies that x, ; converges almost surely to

ok = Yi(90,05---590,k3P0,15--+P0,k—1)s

with the equality a consequence of Panjer inversion. The truncation step is con-
tinuous and leaves the limit invariant, hence p;," — po,x as desired. O

We next consider the distributional asymptotics of the truncated plug-in esti-
mator. In contrast to the situation in Buchmann and Griibel (2003) this new
estimator is not a differentiable function of the empirical mass function §,, as the
truncation introduces a continuous but non-differentiable step. As a consequence
we still have the desirable ‘parametric’ rate n~1/2 but the limit will in general not
be a Gaussian process. Further, we only obtain (weak) convergence of the finite-
dimensional distributions, which we abbreviate as ‘—gq;”. This is a consequence
of our method of proof, which relies on the recursive structure of the estimators.
The truncation step in these recursions prevents the use of the canonical approach
of transferring tightness by local linearization.

To define the limit process let V = (Vi)ren, be a sequence of centred Gaussian
random variables with cov(Vy, V}) = 0x;q0,k —qo,kq0,;. We define Z™ = (Z;")ken,
recursively in terms of V, using an intermediate process W = (Wj),en. For this,
put Z5* = —Vy/qo,0 and, for k € N,

‘ | kel . | kel
Wi = 5r5—Vo — k—Jj)pok—iVi + ~—— Vi — Jq0k—52;" .
5460 kqo,0 ]:Zo( JPo=3Vs A040,0 kqo,0 ]:Zl B
Then
Wk, if Pok > 0 and Z?zl Do,k < 1,
P min{ Wy, — Z;:ll ZIry, if po,x > 0 and Z?:l pok = 1,
koo max{0, Wy}, if po.x, = 0 and Z?Zl pok <1,

max{O,min{Wk, — 25;11 Z}FP}}7 if por = 0 and Z?Zl pok = 1.

The truncation step in the definition of the estimator leads to a truncation step in
the construction of the limit process that depends on the support of the true base
distribution. In particular, if pg, > 0 for all £ € N then (Z;")ren = (Wi)ren and
Z™ is a Gaussian process. For the next theorem, we combine the rate parameter
A and the base distribution p into a single sequence (A, p).
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THEOREM 2.2 Let Ao be the true rate parameter and let po = (pok)ren be the
true base distribution. Then, with Z™ = (Z;)" )ren, as defined above,

\/ﬁ((j‘mﬁﬁp) - (>\07p0)) —aai Z'° asn — 0.

PROOF: The central limit theorem for multinomial distributions implies that
V1(Gn—qo) —aai V, with V' = (Vi) ken, as given above. Using a suitable construc-
tion we may even assume that the convergence holds pointwise for the respective
random variables. (This step together with the subsequent local linearizations ap-
pears in many proofs of distributional convergence, see e.g. Section 4 in Buchmann
and Griibel (2003).) Since A\, = — log ¢ is a differentiable function of ¢, o and
Ao = —log qo,0 we then obtain

" 1
Vi, —Xo) — ZTF = ——Vj.
qo,0

Assume now that we have already shown that

\/ﬁ((cjn,(h s agn,k;ﬁﬁt?? C 31325{:71) - (Q0,0, --+»4q0,k5P0,15 - - - 7p0,k—1>)

converges pointwise to the random vector (Vy, ..., Vi; 277, ..., ZL" ). Let ¥, and
Zn,k be as in the proof of Theorem 2.1. Then a standard calculus argument yields
the pointwise convergence of

V(i — Pok)
= \/ﬁ(\Ijk(QATL,Oa s 7qAn,k;ﬁ;rLf)17 cee 7]57’1;2—1) - qlk(Q0,0v --+»,40,k5P0,15 - - - 7p0,k—1))

to

" 9w,
Z By, (90,05 -+ -+ 90,k3 PO 15 - - -, PO,k—1) Vj
j=0 "% k

+ - Yy ; e _1)Z7".
9z, (90,0 40,k P0,1 Pok-1) Z;

j=1

A straightforward computation shows that this is equal to

d0.1 Vi 1 v 1 =

0.kV0 : k .

’ - > (k= J)pos—;Vi — - > ok Z]"
45 0(log go0)?  kqoo j:O( ) 7 qoologgoo kg = 7

hence /n(x, ; —pox) — Wi with Wy, as given above. The definition of p* implies
k
Vn(pne—pok) = maX{—\/ﬁpo,k, min{\/ﬁ(l‘n,k—po,k), \/ﬁ(l—Zpo,j>—yn,k}}
j=1

with y, 1 = 25;11 \/ﬁ(ﬁff’j — po,j). This representation can be used for a proof
by induction that the sequences (yn k)ren are bounded for all £ € N. Hence, if
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po,k > 0and Z?Zl Po.k < 1 then the right hand side will be equal to v/n(z,_ . —po.k)
for n large enough and therefore converge to Wj. A similar check of the other three
cases shows that

Vn(pn —por) — ZiF.

Putting pieces together we obtain that

\/ﬁ((qnﬂa s 7qA’rl,k+1;p\;thD17 s 71323{:) - (q0,07 -3, 4q0,k4+15P0,15 - - - 7p0,]€))

converges to (Vo, ..., Ves1: 277, ..., Z"). Switching back to the original variables
we see that this completes the proof of the induction step for the convergence of
the finite-dimensional distributions. O

Theorem 2.2 shows that we get a complicated limit process, but the result has
some statistical significance. This rests upon two observations: First, the finite
dimensional distributions E((Z}P)jzow_jk])\,p), k € Np, of the limit process de-
pend on the unknown parameter (A, p) in a continuous manner, as is obvious from

its construction. Hence we can ‘studentize’, i.e. use E((ZJ-TP)jzo,..A,k An,ﬁgP) to

estimate E((ZJ-TP)jzo,,,_7k\)\,p). In view of Theorem 2.1 this will lead to asymp-
totically correct confidence regions for finite sets of parameter components if the
construction of these regions allows the application of the continuous mapping the-
orem. Still, it remains to find e.g. the quantiles of L’(ZEPD\n,ﬁZLP). For this, the
second observation is useful: A centred Gaussian process (Vi )xen, With covariance

structure

var(Vg) = qu(1 — qx), cov(Vi, Vi) = —qqr  for all k,1 € Ny with k # 1

can be obtained recursively from a sequence (§x)ren, of independent centred nor-
mal random variables with

var(&g) = qrtitir1, th = Z q; forall ke Ny
j=k

as follows: Vy := &,
Vi = l(ﬁk — qk kE_lV)
tr =0 !

for all K € N with t, > 0, Vi = 0 if t;, = 0. Together with the above constructive
description of Z™" this makes it easy to generate values from some initial segment
of the limit process so that numerical approximations for quantiles etc. can be
obtained by simulation. Similarly, we can construct critical regions for tests of
simple hypotheses if these involve a finite set of parameters only; see also Sec-
tion 3.3 below.

2.8 The truncated maximum likelihood estimator. Our second estimator uses
likelihood ideas, but otherwise the approach is very similar. Suppose that we base
the estimation of A\g on ¢, 0 and that of pg ; on ¢n0,...,¢nk, as we have done in
the various forms of plug-in estimation. We obtain the recursive step by assuming

6



when estimating pg , that the estimates for Ao and po 1,...,po r—1 are exact. Note
that this is only a heuristic motivation for the following formal definition. Again,
Ap = — log Gn0. If the original data are truncated at k£ + 1 in the sense that we
replace Y; by min{Y;, k 4+ 1} for [ = 1,...,n then the likelihood associated with

(Aapla s 7pk) is given by

k k k
Lo k(Ap1,--opk) = Y dnjlogg; + (1 - Z%,j) 10g<1 - qu‘>,
=0 =0 =0

where qo, ..., qr are the corresponding compound probabilities, related to the ar-
guments of L,, by Panjer recursion. We now define the truncated maximum like-
lihood estimator pj," = (P )ren recursively: Given A, and pp'; for j =1,...,k—1
let p; 4. be the value that maximizes the function

~

ATL ATL
r Ln,k()\naana <. ,pn,k—l?x)

on the interval [0,1 — Zj:ll Ppy;]. This argmax exists, is unique and can be given
explicitly. To see this, we first consider the case k = M,, = max{Y7,...,Y,}. Then
the second part of L, ; vanishes. In the remaining sum only ¢; depends on py,
qr is a strictly increasing function of p; and ¢, > 0, hence p; has to be chosen
as large as possible. The unique maximizer is therefore given by 1 — Z";;i Py
This also implies that p;,~; = 0 for j > M,,; in particular, the truncated maximum
likelihood estimator is a (proper) probability mass function and the recursion can
be stopped after a finite number of steps. For k < M, we rewrite the function

that has to be maximized as follows,
g(az) = 01 + CQ 10g(03 + 0433) + 05 log(l — 06 — Cg — C4(L‘)

with
S k=1 k
Co=dng, C3=""> idni-y Co=Andno, C5=1-2 dn;
j=1 Jj=0
and Cg = z;:& p.;- Here @," denotes the compound distribution with rate
parameter \,, and base distribution prt. None of the constants C', ..., Cs depend

on x and we may assume that Cy > 0. If Cy, = 0 then g is strictly decreasing, which
leads to x = 0. If C; > 0 then standard calculations show that the pre-truncation
argmax of the strictly concave function g is uniquely given by
Cy — CyC5 — CyCg — C3C

CoCy 4+ CyCs

TInk =

R k=1 A k—1

an,k 1 - Zj:O q7Tz,LJ 1 ZjﬁTL gr-
T 2 k—1 . T e Jank—j
)\nqn,O 1— Zj:O n,j an,o = n,)in J
so that finally

k—1
PRl = maX{O , min{xmk , 1 — Zﬁ?T%LJ}} )
j=1
It may be interesting to note that the auxiliary quantity z, ; reduces to the one
that we introduced in connection with the truncated plug-in estimator if we replace
ATL

4 by Gn.k. As in the plug-in case we have that the support of p" is a subset of
the support of ¢,.



THEOREM 2.3 Let Ay be the true rate parameter and let po = (pox)reN be the
true base distribution. Then \,, — Ao and ﬁfl,Lk — po,x for all k € N almost surely
as n — 0o.

PROOF: We proceed as in the proof of Theorem 2.1; indeed, the induction start
remains unchanged as A,, x,,1 and therefore the estimator for py; are the same
for truncated plug-in and truncated maximum likelihood. For the induction step

we use Tk = Pr(Gn,0,- -5 Gn.k; Pty - - - 7252,Lk—1) with
k-1 k—1
Yk 1 - ijo 4; 1 .
Pr(Yo, s Uks 21, 2k—1) = — i i Z]Zij—j

yologyo 1-3"""Jy; kYo o

where the functions g are given recursively by qo(yo) = vo,

log yo .
G = QYoizn,-.. 2k) = —— > iziak-i(yoi 2, ze).
=1

Again, @}, is continuous at the true parameter value, which provides the basis for
the induction step. 0

For the corresponding distributional limit result we again give the construction
of the limit process first. We need the auxiliary sequences ag = (aok)ren and
bo = (bo,k)ren defined by

k—1
o,k _Zpo,jQOk —7> bOk —Z]po,Jaok —j for all k € N.
Jj=1 7j=1

Note that ag = po * qo is a probability mass function. Further let (fo )N, and
(co,k)keN, denote the tail sequences associated with go and ag respectively, i.e.

oo oo
tok = ZQOJ’ Cok ‘= Zao,j for all k € Np.
— =

As for Theorem 2.2, let V' = (V})ren, be a sequence of centred Gaussian random
variables with cov(Vi, V}) = dx;jqox — qo,kq0,;- Again we define Z™ = (Z™)renN,

recursively, using auxiliary variables Wy, k € N: Let Zi* = —Vy/qo0 and, for
k €N,
q0,k q0,kC0, k bo k ok
Wk = ( 2 2 + ) )VO
3430 )‘OQg,OtO,k kg o Nodo,0to,k Z 7

k—1

1 Z qo.k(1 —tor—5) k—j)

+ Vk _ ( ) 5 + ) ZTL .
A040,0 o qo,0to,k 40,0 J



Then

Wi, if po.x > 0 and Z?:1p0,k <1,
e min{ Wy, — Y5} Z7*}, if poe > 0 and 35, po = 1,
b max{ W, 0}, if porx = 0 and Z?:1p0,k <1,

max{0, min{Wj, — Zf;ll Z;-m}}, if porx = 0 and Z;Ll po,k = 1.

Note that the truncation step is identical to the one that we used in connection
with the limit process for the truncated plug-in estimator.

THEOREM 2.4 Let Ao be the true rate parameter and let po = (po.k)ren be the
true base distribution. Then, with Z™ = (Z}")ken, as defined above,

Vi (A, 525) — (Mospo)) —sa 2™ asn — <.

PrROOF: Let ®; and ¢x be as in the proof of Theorem 2.3. If we regard the
exponential function as a non-linear operator on the space of summable sequences,
a view that has been used extensively in Buchmann and Griibel (2003), then

the convolution series that gives ¢ in terms of A and p can be written as ¢ =
exp(A(p — do)). This leads to

oqx,

a—zl(%,o,po,la ce

_J —log(qo,0) qo,k—1, ifk>1,
Pok) = { 0, if & < 1.

Alternatively, this can be verified by induction on using the recursive definition
of qx. The convolution series representation of ¢ also gives

Oqk 1 1

= (90,0;P0,15--->Pok) = —(qok — (Po*qo)k) = —(qo.k — ao,k)-

Yo ( 4o,o ( ) 40,0 ( )
Note that ¢;(go,0;P0,1,---,P0,j) = qo,j. From these we obtain, with Ay = —log g0
and (...) abbreviating (go.0,-.-,90.k:20,1,---,P0,k—1);

5‘I>k( ) = qo,k qok  qo,kCok bo

Yo N@Go  Aogootor  Moggotor  Kkago’

0P

TRy = DLk o =1, k-1,

y; A0qo,o0to,k

ow, 1

Oy, Xo0go,0

0P 1 —top_s i

Oy = okl =tok—y) _Gok—y g g g
0z qo,0t0,k 90,0

Using these we see that
k ~1
0Py, 0Py, L
- Sk X Gz
and we can now continue as in the proof of Theorem 2.2. O
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The same remarks as given after Theorem 2.2 apply in this situation too. In
fact, a slight simplification occurs as 90®, /0y, for j =1,...,k—1 does not depend
on j: With

k—1

&= qor D Vj+torVi,
i=0

which produces a sequence of independent centred normal random variables with
var(&x) = qo,kto kto k+1, We obtain

W, — (CIOk q0,k€0,k bOk)fo

)\oqo 0 )‘Oqo oto,k kqo 0
k—1
Z(QO k(1 —tok—j) n QO,k—j>ZTL
— qo,0t0,k 40,0 J

>\qu oto, k

Written in this form the recursion is driven by independent random variables,
which is convenient in connection with simulations.

2.4 Backwards compatibility. In Buchmann and Griibel (2003) we regarded the
plug-in estimator p;' = (P, )ken as a point in a suitable sequence space and
we directly analyzed its dependence on the sequence (point) ¢, = (Gnk)reN,-
Alternatively, and in the style of the present paper, we can write

~PI

A A APl ~P1
Pnix = \I]k(qn,Oa'"7qn,k7pn,1""7pn,k—1)

and prove consistency and convergence of the finite dimensional distributions of
Vn(pEt — pg) as n — oo, using arguments from the proofs of Theorem 2.1 and
Theorem 2.2. Apart from providing an alternative method of proof (leading to
a weaker distributional result) the recursive structure of the unadorned plug-in
estimator, as displayed above, also leads to the following two observations: First,
if

k

po1>0,...,p0k >0 and Zp01i<1
i=1

then the (strong) consistency of the plug-in estimator implies that there exist an
no € N and a set of probability zero such that, outside this set and for all n > ny,

Py >0,...,p0, >0 and Zpl;;z

A truncation then does not occur in the first k£ steps and therefore pI', = p-%; for
t = 1,...,k. Essentially the same arguments apply to the truncated maximum
likelihood estimator. Indeed, as we will see in the numerical examples in the next
section, the three estimates will typically coincide for the first k components and
then bifurcate. If truncation occurs at that stage because of ZZ 1 by > 1, then
the truncated plug-in and the truncated maximum likelihood estimates w111 be
identical.

10



Secondly, in the special case with pg, > 0 for all £ € N (an assumption that
holds for some popular parametric families, see Section 3.2 below) we can use this
argument, together with the familiar fact that the finite dimensional distributions
determine the distribution of a stochastic process with countable index set, to show
that £(Z™) = L(Z™) = L(W), with W the Gaussian limit process obtained in
Buchmann and Griibel (2003) for the plug-in estimator.

3. Examples. We consider two real data sets in the first two subsections. In
Section 3.3 we discuss the applicability of our results to tests of two hypotheses
that arise in these examples.

3.1 The horse kick data. As in Buchmann and Griibel (2003) we first apply
our procedures to the time-honoured Prussian horse kick data; see e.g. Quine and
Seneta (1987). Of the 200 observations 109, 65, 22, 3 and 1 respectively are equal
to k =0, 1, 2, 3 and 4. Table 1 displays the various estimates, for reference
we also give the plug-in and projected plug-in estimates in the second and third
line. In contrast to our new proposals these have unbounded support. We use
the heuristic argument that Y-values smaller than some & cannot possibly contain
any information about pg; for [ > k£ and stop the recursion underlying the plug-
in estimator at the largest observed value; this is also used as the basis for the
projection in the third line. Next are the truncated plug-in and the truncated
likelihood estimates; we see that both are closer to the traditional interpretation
of these data as being from an ordinary Poisson distribution. Also, both are
identical, as announced in Section 2.4.

k 0 1 2 3 1
P - 0.9825 0.0396 -0.0365 0.0207
T - 0.9422 00380 0  0.0198
PEbe DI - 09825 00175 0 0
Gnks @5, | 0.5450 0.3250 0.1100 0.0150  0.0050
Gon; 0.5450 0.3117 0.1017 0.0242 0.0112
G, T | 05450 0.3250 0.1027 0.0227  0.0039
Poisson | 0.5434 0.3314 0.1011 0.0206 0.0031

TABLE 1: The horse kick data

The next three lines give the respective g-values, beginning with the relative fre-
quencies. By construction, these are equal to the g-values for the straight plug-in
estimate. The final line contains the result of the usual Poisson approximation,
with A estimated by the mean 0.61 of the data (all decompounding estimators
considered in this paper use Ay = —loggno = —log0.545 = 0.606969...). We
see that the truncation estimators give a notably better fit on the ¢-side than the
naively projected plug-in estimator:
4 4
D 1@ = Gnkl =0.037, Y g™ = Goi| = 0.016.
k=0 k=0
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3.2 The plant data. Compound Poisson distributions (‘contagious distributions’)
also appear in the ecological literature where they are used to model plant and
insect populations. In the basic model, apparently due to Neyman (1939), it is
assumed that ancestor plants or insects are distributed in a given area according
to a two-dimensional Poisson process with constant intensity. These have random
numbers of offspring, independent and identically distributed, which stay close to
their respective ancestors. Dividing a given (sufficiently homogeneous) area into
subareas of equal size and ignoring edge effects one then regards the counts for the
subareas as a sample from a compound Poisson distribution. This may be seen as
a two-dimensional variant of our motivating example of queues with bulk arrivals.
Neyman (1939) advocated the use of a Poisson base distribution, the resulting
family of compound distributions is also known as the Neyman Type A family. In
the case of a geometric base we similarly arrive at the Pdlya-Aeppli distributions;
see Chapter 9 in Johnson et al. (1992). (Atoms at zero of the base distribution
can be incorporated into the rate parameter.) A third popular parametric family
in this area is the family of negative binomial distributions. These are also of the
compound Poisson type, the special case of geometric distributions is used below
in one of the simulation examples.

In an effort to find out which of these three families is appropriate for plant
or insect populations Evans (1953) collected and analyzed a variety of data sets.
For plant populations he generally regards the Neyman Type A distributions as
appropriate, but for one of his data sets (14c in the paper) the Pdélya-Aeppli
distribution results in a better fit. In Table 2 below we give this data set together
with our estimates for the base distribution. Again, the plug-in estimate has a
negative entry and the truncated plug-in and truncated likelihood estimates are
identical. The data here are such that the truncation step in the definition of p;7 ,
P, first takes effect with k = 8, hence both are equal to p;') for k =1,...,7. Asa
consequence these estimates give a perfect fit of observed and expected frequencies
in this k-range, which cannot be obtained with any of the parametric models
mentioned above. On the other hand a parametric model, if correct, could be used
to extrapolate beyond the range of the observations, for example by providing an
estimate for high quantiles of the offspring distribution.

k| o 1 2 3 4 5 6 7 8 9 10 11 12
counts | 274 71 58 36 20 12 10 7 6 3 0 2 1
i - 431 .296 137 .049 .023 .029 .018 .018 .002 -.011 .009 .003

PR BT, | - 431 296 .137 .049 .023 .029 .018 016 0 0O 0 0

TABLE 2: The plant data

For data such as these our procedures provide a partly nonparametric alter-
native to the classical approach. In effect, we estimate the offspring distribution
directly, without any parametric assumptions, but the assumptions on the spatial
distribution of the ancestors remain in force.

3.3 Significance tests. The numerical examples in the previous two subsections
are mainly meant to illustrate the estimators that we introduced in Section 2 and
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to compare them with the plug-in estimators in Buchmann and Griibel (2003). Of
course, the question arises as to what extent our asymptotic results can be used in
connection with formal significance tests, for example of the hypothesis that we do
have a straight Poisson distribution in the first example or whether the deviation
from a geometric distribution is significant in the second.

In the first case the hypothesis can be written as pp; = 1 and the procedure
mentioned at the end of Section 2.2 can be applied. For the test statistic T}, :=
vn(l— Pni1)) , for example, Theorem 2.2 leads to the distributional approximation

— 77" = max{—Wji,0} with Wi ~ N(0,02()\)) and

1= A+ X2 —e A
N2 oA

o?(\) =

Inserting A = 0.606969 we arrive at the approximate p-value 0.4058 for the ob-
servation v/200(1 — 0.9825) = 0.2474... of T,,.

The hypothesis of a geometric base distribution in the second example does not
have this simple form and the familiar problems with goodness-of-fit tests using
estimated parameters arise; see Pollard (1984), pp. 99 and 159 for a classical case.
A modern approach to problems of this type circumvents the explicit distributional
approximation by estimating the distribution of the test statistic directly, using a
combination of the plug-in principle and Monte Carlo approximation (bootstrap
tests). In this context an extension of our results to the case of a converging
sequence of rate parameters and base distributions would be of interest.

4. Some simulation experiments. In our next two examples we use simulated
data, with A\g = 2 and po the uniform distribution on the set {1,4,6} in the first
case. Figure 1(a) shows the result of 50 simulations with sample size n = 500.
Displayed are the corresponding absolute error sums, with o and + for the vectors
with coordinates

M, M, M, My,
(Z Pr5 — pokl s Y 1BR — po,k\) and (Z Pr — pokl s Y 1DR% — po,kl)
k=0 k=0 k=0 k=0

respectively. To make the comparisons easier the plots include the line z — (z, x).
The figure shows that, at least in this particular example, the new estimators both
considerably improve upon the projected plug-in estimate, and that the two new
estimators show a very similar performance.
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FI1GURE 1 Error comparisons for simulated data
o: PPI vs. TP, 4+: TL vs. TP

In the second example with artificial data we take gg to be the geometric dis-
tribution with parameter o = 0.25. It is known that this is a compound Poisson

distribution with rate parameter A = —log(a) and with the logarithmic distribu-
tion
1—a)k
Do, = _g ) ke N;
’ klog o

as base distribution; see e.g. Chapter 7 in Johnson et al. (1992). As explained in
Section 2.4 the limit processes are then the same for all three estimators, which
leads us to suspect that the projected plug-in estimate can compete with the
truncation estimates. To some extent this is confirmed by Figure 1(b).

In our last experiment we consider the performance of the truncated plug-in,
the truncated likelihood and the projected plug-in estimators with respect to a
structural property of the base distribution such as its support. Again, the base
distribution is uniform on the set {1,4,6}. Table 3 gives the percentages of the
correct results in 1000 simulations for two different sample sizes and rate param-
eters. For example, the last value 93.9 in the first line means that the truncated
plug-in estimator gave the correct value > o por = 0 in 939 of the 1000 runs
with n = 1000, A = 4. (The values in the table remain essentially unchanged if
we replace the condition z = 0 by |z| < 0.001.) It appears that the truncated
plug-in procedure is slightly superior to the truncated likelihood variant for large
k-values, with the order reversed for k£ = 3. Again, both outperform the projected
plug-in estimator.

14



n =500, A = 2 n=1000, A = 4
k 2 3 5 7 8 >9| 2 3 5 7 8 >9

TP | 50.2 62,9 480 71.0 86.3 88.7 | 51.1 68.1 42.7 62.5 85.4 93.9
TL | 50.2 754 477 645 819 763 | 51.1 77.2 352 520 76.0 74.9
PPI | 50.2 474 478 52.0 481 0.0 | 51.1 43.6 33.3 438 447 0.0

TABLE 3: Support results with unif({1,4,6})

In the degenerate case, with data from an ordinary Poisson distribution, getting
the support right means that the base distribution is estimated with zero error.
Interestingly, the limiting probability that this occurs is equal to 1/2, irrespective
of the rate parameter:

P(pya=1) = Pp,1=1)
= P(Gn1 > Ann.0)
= P(Vn(Gn,1 — q0,1) = GnovV1(An — o) — Aov/(dn0 — 90,0) > 0)
— P(Vl—l—(l—)\g)VOzO) asn — 0o
— 1/2.

The support results may seem to be a bit disappointing but they can be regarded
as another instance of a boundary effect familiar in order-restricted statistical
inference. A canonical example is provided by a sample Xi,...,X, from the
normal distribution where we know that the true mean p is nonnegative. If we
estimate p by i, := max{X,,0}, X, :==n"1 > | X;, then we have P(fi,, = ) =
1/2 at the boundary u = 0 of the parameter space; see also the distributional
approximation for the test statistic 7;, in Section 3.3.

As a final comment we mention a drawback of the estimators considered so far:
They do not provide a sensible result if no zero values are observed. Ordinary
maximum likelihood estimators do not have this drawback but have some others
instead, as will be discussed in a separate paper.
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