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A 13STRACT 

Numerical evaluation of  compound distributions is one of the central 
numerical tasks in insurance mathematics. Two widely used techniques are 
Panjer recursion and transform methods. Many authors have pointed out 
that aliasing errors imply the need to consider the whole distribution if 
transform methods are used, a potential drawback especially for heavy- 
tailed distributions. We investigate the magnitude of aliasing errors and 
show that this problem can be solved by a suitable change of measure. 
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1. INTRODUCTION 

The starting point for stochastic modelling in insurance mathematics is the 
assumption that claims made to an insurance company are of random size 
and arrive at random time. A widely used stochastic model for this situation 
stipulates that the claim arrival times constitute a Poisson process of 
constant rate, that the claim sizes are independent and identically 
distributed, and that claim sizes are independent of the arrival process. 
This classical risk model is discussed in many textbooks; see e.g. Beard, 
Pentikfiinen and Personen (1984), Grandell (1991) or Hipp and Michel 
(1990). 

As a consequence of  the structural model assumptions the quantities of 
interest depend on the rate A of the Poisson arrival process and the 
distribution # of  the individual claims only. One such quantity is the 
distribution u of the total claim amount over a given period of  time, say 
[0, t]. If Pk is the probability of  exactly k claims in [0, t] and with " , "  
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denoting convolution, v can be written in the form 

oo 

(1.1) 
k = 0  

i.e. u is a compound distribution. In the classical model the number of claims 
has a Poisson distribution so that 

Pk = exp(-At) (At)* (1.2) 
k~ 

and u is a compound Poisson distribution. The compound geometric case, with 
Pk-~ ( 1 -  p)kp for some p E (0, 1), is important in connection with ruin 
probabilities; see Section 4 below. For general compound distributions 

)--~k=OPk -= 1 (Pk)k~N0 can be any sequence of non-negative real numbers with o0 
IfXl,  X2, ... are independent random variables with distribution # and if~- is 
another random variable, independent of the X-variables and with 
P(T = k) = Pk for all k E N0, then u is the distribution of the random sum 
S~ := Xl + X2 + ... + ArT; we take this sum to be zero ifT = 0. In the context 
of insurance modelling, the X-values are the individual claims and ST is the 
total claim amount. 

The question of how to calculate u from /z and (Pk)k~r% has attracted 
much interest over the last decades and continues to be an active topic of 
research; see e.g. Embrechts, Grfibel and Pitts (1993), where transform 
methods are explained and reviewed, and Asmussen and Binswanger (1997), 
who advocate a simulation approach in the case of compound geometric 
distributions. These methods can both be applied for general compound 
distributions. In the classical risk model the special cases of compound 
Poisson and compound geometric distributions are of main interest. For 
these and # of lattice type there exists a recursive scheme due to Panjer; see 
Panjer (1981) or Kapitel 3 in Hipp and Michel (1990). Further methods 
exist, and several authors have investigated the relative merits and potential 
drawbacks of the various approaches; see e.g. Bfihlmann (1984), Buch- 
walder, Chevallier and Klfippelberg (1993) and Schr6ter (1995). 

The situation described above is typical for stochastic modelling insofar 
as cases in which u can be given explicitly are few and far between, so various 
approximations have to be made which all entail some inevitable associated 
error. These errors are random if the Monte Carlo method is employed. 
Both Panjer recursion and the transform approach depend on an 
initial discretization of the claim size distribution #: For a given 
discretization parameter h > 0 let #h be the distribution concentrated on 
hNo = {nh :n E No} with 
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In words, intervals of  length h are lumped to their respective centres. If  h is 
small enough then the compound distribution Uh associated with #h is close 
to the compound distribution u associated with # (if e.g. "close" refers to the 
supremum distance of  the distribution functions). In a companion paper, 
Grfibel and Hermesmeier (1999), we discuss the discretization error and 
show that it can often be reduced dramatically with the help of  extrapolation 
techniques; see also Embrechts, Grfibel and Pitts (1993) for a "weak" result 
in this direction. This is of interest for transform and recursion methods. In 
the present paper we ignore the discretization error and assume that the 
claim size distribution is of  lattice type, i.e. concentrated on some 
hNo, h > 0. A simple scaling argument shows that we may then assume that 
h = 1, so that we are dealing with claim size distributions concentrated on 
the non-negative integers. Of  course, both recursion and transform methods 
require an additional truncation step, i.e. we replace the infinite set N0 by 
{0, 1, ..., N -  1} with some N E N. Panjer recursion, if it app!ies and if we 
ignore errors from floating point representation etc., obtains the exact values 
u((n}), n = 0, ..., N -  1, from #((n}), n = 0, ..., N - 1. Transform meth- 
ods introduce an additional error, the aliash~g error, essentially a wrap- 
around effect due to the replacement of  the usual summation of integers by 
summation modulo the truncation point N, but their operation count grows 
as N log N only if the fast Fourier transform (FFT) algorithm is used 
whereas recursion needs an operation count of order N 2. Therefore, for the 
comparison of these methods, the order of magnitude of  the aliasing error 
and techniques for its reduction are of theoretical and practical importance. 
In this connection heavy-tailed claim size distributions are of  special interest, 
see Asmussen and Binswanger (1997) and the recent monograph by 
Embrechts, Klfippelberg and Mikosch (1997). 

In the present paper we obtain a simple general bound for the aliasing 
error. We further show that the local behaviour of the functional that maps 
# to u can be used to investigate the asymptotic behaviour of  this error as the 
truncation point N tends to infinity. From this analysis it follows that the 
general bound is asymptotically sharp in cases where the tail of  the 
individual claim size distribution decreases at a faster rate than the tail of  the 
compound distribution. We also discuss the case where these tails are of the 
same order of  magnitude. In our view this approach contributes to the 
theoretical understanding of transform methods. From a practical point of 
view, and especially for heavy-tailed claim size distribution, our second 
finding appears to be of some immediate use: We show that aliasing errors 
can be eliminated for all practical purposes by a suitable change of  measure. 
This technique is of  considerable importance in many areas of  probability 
and statistics and is also known as exponential tilting and closely related to 
the Esscher tran.ff'orm. 

The paper is organized as follows. In Section 2 we first give a summary of 
the transform method. This has been done previously by other authors, see 
e.g. B/~hlmann (1984) or Embrechts, Griibel and Pitts (1993), so we keep this 
brief. Our treatment will be somewhat abstract, which enables us to expose 
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the simplicity of  the underlying ideas once a bit of  nota t ion is introduced.  
We then discuss the aliasing er ror  and explain the exponential  change o f  the 
measure. Section 2 ends with the description o f  an algori thm designed to 
reduce such errors.  In Section 3 we look at a part icular  numerical example,  
taken from Embrechts ,  Grfibel and Pitts (1993), which was chosen to exhibit 
the aliasing error  in an extreme case. The algori thm introduced in Section 2 
is shown to work well. Section 4 explains two related applications, to the 
calculation of  ruin probabilit ies and the mean function in the Sparre- 
Andersen model o f  risk theory.  Some concluding remarks are collected in 
the final section. 

2. RESULTS 

Distr ibutions # that are concentra ted on No can be described by the sequence 
a = (a,,)nsN ° of  their a toms a,1 := #({n}).  Such sequences are elements of  the 
space 

g ' : = {  (a') '~N'EC~°:~--~'a' ' '<°e } , 1 = o  

of  absolutely summable  complex sequences, which, when endowed with the 
noFfn 

II-rl,:e  Ilalll 
Ibm--0 

becomes a Banach space. Conversely,  every a E ~1 defines a complex valued 
finite measure on No. We can similarly interpret  the elements 
a s = (a0 N, ..., a~_ , )  o f  the s tandard N-dimensional u n i t a r y v e c t o r  space 
C u as complex-valued measures on the cyclic group GN of  order  N. This 
group may be identified with {0, 1, ..., N - l }  if the usual ari thmetic 
operat ions  are carried out  modu lo  N. We will use the letters a, b, c .... for 
elements o f  gt and a s , b N, c N, ... for elements o f  CSand  we write a,, or  
(aN),, for  the n th componen t  o f  a sequence a or a vector  aN; note that 
indices start  at n = 0 in both  cases. On C N we will use the norm 
[[aN[ll : =  ~-'~nN=; 1 [a, N] (the "ci ty block norm" ;  it should be clear from 
the context  whether  [[.[[j refers to gl or cN).  

Both No and GN have an additive structure, which leads to the notion of  
convolut ion  for measures on these sets. The convolut ion  product  c = a • b o f  
two sequences a = (a,,),,~No, b = (b,,),,~oE el is defined by 

n 

c,, := Z a,,,b,l-,,i for all n E No. 
?11~0 
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For elements a N, b N o f  C N we use the same symbol " , "  and put 

N - I  
( a N , b N ) ,  :=  N N arab,l_,, for all n = 0 ,  1, ..., N - l ,  

111~0 

where the bN-index is obtained on subtracting in CVN, i.e. modulo  N. 
The norm inequalio, I{a * b[{i <_ [[a[[l [[b[[l holds for all a, b E g], and similarly 
II aN *bUll] < I]aN[ll[]bUlhl for all aN,b N E cN; we even have 
[I a ,  bil l= laalll][b][l if all entries of  a and b are non-negative. We write a *k 
for the k tti convolution power of  a E gl and use the convention a *° = 60, 
where 6oo = 1 and 601, = 0 for n > 0. The sequence 6o is the unit element with 
respect to convolution; the corresponding definitions for C N should be 
obvious. 

In this formal framework the relationship between the distribution of  
individual claims and the distribution of  the total claim amount  is given by a 
nonlinear operator  (functional) ~, 

o o  

{a E e, : llall,<_ 1} e,, :---- ~-~pka *k. 
k = 0  

Here and in the following we regard the sequence (Pt')ke~0 as fixed; Pk is the 
probabili ty of  exactly k claims. For  some special p-sequences the elements of  
b = ~(a)  can be obtained recursively: If  e.g. Pk = e-"c~k/kI for all k E No, 
then 

/ /  

bo = e -°('-~'°), b,, = ~ Z mamb,,_,, for all n E l~l. (2.1) 
117~ ] 

This formula arises in the context of  discrete infinite divisibility, see e.g. 
Johnson,  Kotz  and Kemp (1992), p. 352. It provides the basis for Panjer 's 
recursive algorithm for the computat ion of  compound  Poisson distributions. 

Since convolution can also be done in C ° we have an analogue of  ~ for 
measures on (~N, 

k=O 

This is the total claim size distribution function if the aggregate claims are 
readjusted by subtracting a suitable multiple of  N whenever the sum 
overshoots the threshold N. 

We now connect the sequence and vector spaces by three bounded linear 
operators, which represent truncation,  zero padding and aliasing respec- 
tively: 

TN : gl --~ cN ,  (TN(a))  n :-= a,  for n = 0, ..., N - 1, 
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N for n 0, N 1 
u N :  c N e , ,  ( U N ( a N ) ) , ,  : =  a , , ,  = . . . ,  - , 

O, otherwise, 

oo 

VN : e l  ~ C N, (VN(a)) , ,  := Z a , , + i U  for n = 0, ..., N - 1. 
j=0 

With " I d "  denoting the identity operator  o n  (~N we obviously have 

T N o OAr = V u o O u = I d ,  (2 .2 )  

and, due to the rules of  addit ion modulo  N, 

VN(a * b) = VN(a) * Vu(b)  fo ra l l  a, b E gl 

(note that " , "  refers to different spaces on the two sides of  this formula). 
This, together with the continuity of  VN, implies 

ffd N O V N -~- V N o k~. (2.3) 

To complete our  notat ional  round up we require Fourier  t ransformation.  
For  a E gl the Fourier  t ransform b is given by 

oo 

b :  [0,27r) ~ C, h ( 0 ) : =  Z a " e i " °  for all 0 e [0,2~r). (2.4) 
n~0 

L e t  w u "=  exp(2~ri /N) be the canonical N th root of unity. The Fourier trans- 
form (aN) ̂  of some a N 6 C A' is given by 

N-I 
c (a )2 : =  N . , , , ,  a,,,w N for n = 0, ..., N -  1. (2.5) 

111=0 

N (k - I ) ( I - l )  
If we define an N x N-matrix W = (Wkt)k,t=l by Wkt := W u 
then, in matrix notation,  (aN)A= Wa N. Writing W for the complex 
conjugate of  W we further have W -I = N -I W and consequently 

i~v-I 
N E {aN~Aw-"n for n = 0, N -  1, (2.6) an = ~  ~, /m N "", 

IH: 0 

i.e. there is a simple inversion formula for Fourier t ransformation on GN. 
Note that  Fourier  t ransformation o n  G u is a numerically stable operation: 
apart  from a constant  factor both W and W -~ are unitary matrices so that 
blow-up of  approximation errors due to rounding etc. need not be feared. 

It is well-known that convolution becomes pointwise multiplication on 
the t ransform side, i.e. 

(a * b)^= h . b, (a N * bN)A= (a N) A.(bN)/x (2.7) 
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for all a,b E el, a N , b  N E C N (multiplication of vectors is understood to be 
componentwise-we regard the elements of C u as complex functions on the 
set {0, ..., N -  1}). Let H be the probability generating function of the 
p-sequence, i.e. 

o o  

H: {z C: Izl _< 1) C,  pk?. 
k=0 

Then the following identities, which are fundamental for our purposes and 
again are well-known, follow easily from (2.7), 

kV(a) ̂  = H o b, ~ N ( a N )  A -~ H o (aN) A, (2.8)  

for all a, a N in the respective range of definition. We mention in passing that 
the relation 

(Vu(a)),  A = h(ZTrn/U) for n = 0, ..., N -  1 

between the transforms on gl and C u leads to an immediate proof of 
relations such as (2.3). 

Putting pieces together we arrive at the following transform algorithm for 
the computation of an approximation b N to the compound distribution 
b := tI,(a) for a given claim size distribution a. 

Algorithm 1 
(i) truncate the input sequence a at some threshold N : a ~ a N := TN(a); 
(ii) apply (2.5) to the result o f  step (i): a N ~ (aN)A; 
(iii) apply H to the result o f  step (ii): (aN)^~ H o~aN) ̂  = (tI'N(aN))^; 
(iv) apply (2.6) to the result o f  step (iii): (~N(aN)) ~ b N := ~PN o TN(a). 

Note that we used (2.8) in Step (iii); for many cases of interest H can be given 
explicitly. Apart from errors such as those induced by the floating point 
representation of  real numbers on a computer steps (ii)-(iv) of  this algorithm 
evaluate compound distributions on  (~U exactly. 

It is clear that things might go badly wrong if there is substantial mass 
near N, as this mass will simply be wrapped around the threshold N and 
reappear at 0 (a year 2000 problem, so to speak). This can seriously distort 
the outcome, especially for heavy-tailed distributions. The following 
theorem gives bounds for the aliasing error  b N - T N ( b ) ,  b := g2(a). 

Theorem 2 
With b and b N as above, 

o o  

b. _< b~ < b,, + Z b,,+jN for 
j=l  

In particular, lib u -  TN(b)lll< ~.%ub, , .  

n = O ,  ..., N - 1 .  
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Proof: On g~ and C N w e  consider the componentwise ordering, e.g. we write 
c > 0 if all components of  c are non-negative. In particular, this holds for a 
as its entries are probabilities. Note that ~ is monotone in the sense of 

a,b ~ ~ ,  O < a < b ~ ~(a) < ~(b), 

and similarly with ~I'U. For the truncation operator we have 

T;v(a*b)< TN(a)* TN(b) foral l  a,b~g~,  a,b>_O. 

This implies 

oo 

bN : ~ N  0 T N ( a  ) : ~ - ~ p k ( T N ( a ) )  *k 
k=0  
oo 

k~O 

= T N o ff~(a) : TN(b ) ,  

which is the left hand side of the inequality. Further, Tu(a) < Vu(a) because 
of a _> 0, hence monotonicity of 'k~-/u and (2.3) together give 

~t~U o TN((I) ( ~U o VN(O) = VN o ~(a) = VN(b), 

which yields the right hand side. [] 

Note that the upper bound Y~,,~N b,, has a simple interpretation in the 
risk model, it is the probability that the sum of the claims exceeds the 
threshold N. In particular, we can draw the qualitative conclusion that the 
aliasing error becomes negligible with increasing N. For practical purposes, 
however, a more quantitative statement would be of interest. Using the 
componentwise ordering introduced in the above proof  we can rewrite the 
first statement of  the theorem as 

TN(b) < b N <_ VN(b), (2.9) 

with the central term the result of  the algorithm and the left term the target 
value. Is the general upper bound Vu(b) too conservative? To deal with 
questions of this type we investigate the asymptotic behaviour of  b u as 
N ---* ~ ,  using a differentiability property of  the functional ~I,. We assume 
that the sequence (pk)k~0defining ~ satisfies the condition 

OO 

k2pk < 0% (2.10) 
k = l  
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and may then define another  functional • by 

,I,: {a ~ e,:  Ilall,<_ 1} --, e,, ,I,(a):= ~kp~ . a  *(k-'). 
k = l  

205 

Lemma 3 
I f  a(N),  N e N and a are elements o f  {a e el : Ilall,_< 1} 
Ha(N) - al[l--~ 0 as N ~ co, then 

IItI,(a(N) ) - tI,(a) - +(a) • (a (N)  - a)lll = O ( l l a ( N  ) - ally).  
\ 

with 

Proof: Simple algebra shows that, for all k E N, 

k - I  
a(N)  "k - a *k -- (a (N)  - a) * ~ a (N)  •(k-l-j) * a *j. 

j=o 

In particular, it follows with the norm inequality that 

a(N)  *k - a *# <_ k .  Ila(N) - all I for all k E N. 
1 

We can now write 

f f l(a(N) - rw(a) - c~(a) . (a (N)  - a) 

The j-sum 
follows on using (2.10). 

Do k - 2  

k=2  j = 0  

Do k - 2  k - 2 - j  

= (a(N)  - a ) * 2 .  Z p k  Z a*j * Z a(N)*(k-2-j-I)  *a*l" 
k = 2  j = 0  /=0  

m the last term is bounded in norm by O(k 2) so that  the assertion 
[] 

We can now obtain an expansion of  the difference between the result of  
Algori thm 1 and the upper bound in Theorem 2 in terms of  Y~,,~=N a,,, i.e. the 
tails of  the distribution of  individual claims. 

Theorem 4 
Assume that (2.10) holds; let a ( N )  := U N o TN(a). Then, as N ~ e~, 

h l g N ( b ) - b  N - g N ( ~ ( a ) ) *  g~(a-a(g))ll,= 0 a .  . 
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Proof." Using (2.2) and (2.3) we obtain 

VN(b )  -- b N = VN o ~ ( a )  -- q2N o TN(a )  

: g N o ~ ( a )  - ~ U  o V N o O N o T N ( a )  

= V u ( ~ ( a )  - ~ ( a ( N ) ) ) .  (2.11) 

Lemma 3 shows that 
/ 

I l g ( a ( N ) )  - 9 ( a )  - ~ ( a )  • ( a ( N )  - a)ll,= O t  i l a (N  ) - an t  ) . 

Clearly, applying VN does not increase the norm, and l id (N)-a l l  l :  
oo 

~-~,= N a ,  . [] 

To use this theorem in connection with the asymptotic behaviour of 
aliasing errors we note that (2.9) implies 

lib u - Tu(b)ll,+tlVN(b)-bUll,= ]lVu(b)- TN(b)N,. 
N - I  The first term is the aliasing error ~n=o Ib, N - b,,[, the right hand side is the 

tail ~,,~N b,, of  the compound distribution. For the middle term we obtain 
from Theorem 4, 

l iVN(b )  - bNiii = I l V u ( ~ ( a ) )  * V N ( a - a ( N ) ) I ] i + O  a,, . 
n=N 

Using the fact that all entries of ~I,(a) and a -  a ( N )  are nonnegative we 
obtain 

II V N ( ~ ( a ) )  * V N ( a  -- a(N))l[i = lift(a) * (a - a(N))ll , 

= Ir'I'(a)l l l  rla - a ( g ) l l ~  

= (k__~ kpk) ,la - a(N),[, 
oo 

= H ' ( I )  
l l=N 

so we have the following relation between the aliasing error, the tail of  the 
individual claims and the tail of  the compound distribution, 

N 121 a.. 
n=O n=N n=N \ n = N  "/ I 
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As a first consequence we see that under certain circumstances the upper 
bound in Theorem 2 is asymptotically tight in the sense that the output b N 
of the algorithm is asymptotically closer to Vu(b) than to Tu(b): If 

oo oo ~-],=ua,, = o(y]~,,=Nb,, ) then we obtain 

E,7-0' fb,, - b,,I 
N--,o~ ~--~,,%N b, = 1. (2.13) 

This condition means that the tail of the distribution of individual claims is 
asymptotically negligible in comparison to the tail of  the total claim size 
distribution. It is obviously satisfied if e.g. claim sizes are bounded. Indeed, 
in this case we obtain from (2.11) that b N =  VN(b) for all N>_No, 

oa  a No := min{N E N: ~-'~,,=N , = 0}, hence the upper bound in Theorem 2 
cannot be improved without further conditions on the claim size 
distribution. 

oo a Of course, if the individual tails ~--]~,,=N ,, are of the same order as the 
compound tails Y],,~N b,, then (2.13) may fail to hold. A notable example for 
this situation is the case where (Pk)k~r~ decreases at an exponential rate (as in 
the compound Poisson and compound geometric case) and where the claim 
size distribution is of subexponential type, i.e. (in the present discrete setup) 

oo 

n = N  n = N  

where the tilde means that the ratio of the two quantities tends to 1 as 
N ~ cx~. The class S of subexponential distributions has been the object of  
much research as it provides the natural setting for many limit theorems; 
see e.g. Embrechts, Goldie and Veraverbeke (1979), Embrechts and 
Veraverbeke (1982) and the references therein. In particular, under the 
above assumptions, 

oo oo 

~ b , , , ~ H ' ( l ) Z a , ,  , (2.14) 
n = N  n = N  

so (2.12) leads to 

lira E"u°'oo Ib'u - b"l = lira E''u°too Ib'u - b ' l  = 0 .  (2.15) 

Note, however, that the fact that in this case the outcome of the algorithm is 
asymptotically closer to the left than to the right boundary of the interval 
provided by Theorem 2 is of somewhat marginal significance because of the 
large size of this interval. Nevertheless, it would be interesting to know 
whether a second order refinement of (2.14) together with the use of higher 
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order derivatives of  • would lead to more precise statements on the 
asymptotic behaviour of the aliasing error for subexponential claim size 
distributions. 

Subexponential distributions are heavy-tailed. Related classes ,5(7), 
7 > 0, with exponential rate of  tail decrease can be defined by the 
requirements 

043 O0 C2~ ~ 

< o.. E7 ( a ) ,  ~ 2 ~ a , , ,  
n = 0  n = N +  I n = N  n = N  n=N 

in which case we necessarily have t~ = ~n~=0 eV"a,,(> I). Again, this is a well- 
studied class; see Chover, Ney and Wainger (1973) in addition to the above 
references for ,S = S(0). For such distributions it holds that 

CX3 (X~ 

n = N  n = N  

provided that Pk = O(P -k) for some p > ~. The H-functions that are of 
interest to us have a strictly monotone first derivative so that H ' ( I )  < H'(~). 
Hence (2.12) implies that b N is asymptotically strictly between the two 
bounds in Theorem 2, i.e. we have a behaviour intermediate between (2.13) 
and (2.15): 

0 < lim y~'~''u°' Ibu -b'l  H'(~)- H'( I )  
- < 1 .  

N---*oo Zn%Nbn Ht(Ig) 

The above considerations show that the local behaviour of  the functional 
can be used to relate the asymptotics of the aliasing error to the tail 
behaviour of  the distributions involved. From a purely practical point of 
view the main conclusion remains, however, that for the purposes of 
Algorithm I it would be desirable to have rapidly decreasing compound 
tails. The main idea of the alternative algorithm that we propose now is a 
change of  measure that forces the tails of the compound distribution to 
decrease at an exponentially rate. 

The mathematical basis for our aliasing error reduction method is the 
observation that "an exponential change of  measure commutes with the 
compound distribution functional". To make this precise we require one 
final bit of notation: For a E gl and 0 E IR, let Eoa be the complex sequence 
defined by 

(Eea),, := e-"°a, for all n E l~lo. 
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The operator Eo tilts the input sequence, 0 is the tilting parameter. For 
0 >_ 0 Eo maps gl into gl and [{Eoalll _< [{all I . We further have for all a, b E gl, 

n 

((Eoa) * (Eob)),, = ~ (Eoa),,(Eob),,_,,, 
I"11~0 

n 
--nO 

= e Z ambn-m 

= (Eo(a  • b)) , , ,  

so that E o ( a * b )  = Eo(a)*Eo(b) .  From this we easily obtain 
o Eo = Eo o ~,  which is the idea behind the following algorithm. 

Algorithm 5 
(i) Tilt the input sequence a with some suitable 0 > 0 : a ~ ao := Eo(a); 
(ii) truncate the result o f  step (i) at some threshold N : ao ~ a N := TN(ao); 
(iii) apply (2.5) to the result o f  step (ii): a N ~ (aN)A; 
(iv) apply H to the resuh o f  step (iii): ( a f f ) ^ ~ ' t t  o (aN)A= (%v(aU) )^ ;  

• " " " N A" '" " N  ~ . . . .  (v) apply (2.6) to the resuh o f  step (,v): ( q N ( a  o ))  ---~ b o := ~N o TN(aO); 
(vi) undo the tilting." b~ -~ b N :-= E - o b j .  

The exponential tilting in step (i) produces rapidly decreasing tails, hence the 
aliasing error introduced by steps (ii)-(v) will be small by Theorem 2 if N is 
large. At least for small indices n the inevitable Now-up of  errors introduced 
by the multiplication with potentially large factors in step (vi) is negligible in 
comparison with the overall improvement. 

3. A NUMERICAL EXAMPLE 

In Embrechts, Grtibel and Pitts (1993) the difficulties arising from aliasing 
(and discretization) errors were illustrated in a special case, where the claim 
size distribution was taken to be the stable distribution with index I/2. This 
distribution is concentrated on the non-negative real numbers and has an 
additional scale parameter c~, the corresponding density is 

c~ - ~  
f a ( x ) : - ~ e x p  , x > 0 .  

Since f ~ , f 0  =f~+~ it is easy to obtain a corresponding compound 
distribution numerically to any desired degree of precision directly from 
the definition (1.1). In the above paper the Fourier transform based 
approximation for the distribution function of the associated compound 
Poisson distribution with At = 20 in (I .2), i.e. the numerical approximation 
resulting from discretization and subsequent application of Algorithm 1, was 
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compared to the true distribution function and it was found that, even with 
N = 16384 discretization intervals, the supremum distance would never be 
less than 0.034, irrespective of  the truncation point. 

Here we ignore the discretization error, which we will investigate in Part 1I 
of  the present paper, and we compare the results obtained with Panjer 
recursion and transform methods. We also compare individual probabilities 
instead of distribution functions: By design, the supremum distance between 
the distribution functions cannot be smaller than the probability that the 
compound distribution exceeds the threshold value, if the supremum is taken 
over the whole real line. This elementary observation applies to both Panjer 
recursion and the transform based algorithm. 

In practice the parameter 0 involved in the exponential tilting cannot be 
chosen arbitrarily large as this might result in under- or overflow errors. A 
rough guideline would take the truncation point x0 = Nh into account. The 
minimal and maximal factors arising in steps (i) and (vi) of Algorithm 5 
would be exp(i0x0);  a value of  about 20 for the product 0x0 will in general 
not lead to numerical difficulties. 

Table 1 gives some numerical values for the special case described above; 
N = 1024 discretization intervals of  length 1 were used. The second column 
gives the true values for u ( [ x -  0.5, x + 0.5]), the third the corresponding 
approximations obtained after discretization and use of (2.1). The column 
labeled "AIgl"  shows the results of  Algorithmn I, the unadorned Fourier 
transform algorithm. The alias or "wrap-around" effect is easily seen: the 
results for small x-values are at least an order of  magnitude always from the 
true values. The remaining columns were obtained with Algorithm 5, with 
tilting parameters 0 = 0.001, 0.0049 and 0.0244 respectively, corresponding 
to the values I, 5 and 25 of  the product of  tilting parameter and truncation 
threshold discussed above. 

TABLE I 

COMPOUND PROBABILITIES AND APPROXIMATIONS 

x true Partier A Ig ! A Ig5a AIg5b A Ig5c 

1 1.078E-07 2.462E-07 2.064E-04 7.346E-05 1.560E-06 2.462E-07 

10 3.075E-05 3.432E-05 2.380E-04 1.067E-04 3.562E-05 3.432E-05 

100 1.156E-03 1.156E-03 1.321E-03 1.215E-03 1.157E-03 1.156E-03 

1000  2.013E-04 2.012E-04 2.134E-04 2.056E-04 2.013E-04 2.012E-04 

Obviously, the accuracy is improved considerably by the change of  
measure. This is perhaps easier to see in Table 2, where the logarithm of the 
ratio of  the approximation and the value obtained by recursion is displayed. 
The "large" value for x = 1000 in the last column can be explained by the 
occurrence of  large factors in the last step of Algorithm 5: with tilting 
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parameter 0 = 0.001 factors of the order 10 l° appear and rounding errors 
begin to be important. The sum of all absolute differences between the 
probabilities obtained with Panjer's algorithm and the transform based 
algorithms were 0.0714, 0.0255, 0.000459 and 0.0000003121 respectively, 
which is further support for the overall conclusion that for practical 
purposes the aliasing error can be eliminated by a judicious use of  
Algorithm 5. The upper bound )--~'~n~N b,, from Theorem 2 takes the value 
0.4641 in this example, much larger than the actual value 0.0714. Note that 
this is an example with a subexponential claim size distribution, so this is in 
accordance with (2.15). We finally note that a comparison of the values in 
the second and third column of Table 1 shows that there is a pronounced 
discretization error, again most notable for small x-values. 

TABLE 2 

LOGARITHMIC DIFFERENCES 

x Algl AIg5a AIg5b .41g5c 

1 6.732 5.698 1.84659 0.0000000110 

I 0 1.936 1.134 0.03715 0.0000000001 

I O0 O. 134 0.050 0.00092 0.0000000000 

1000 0.059 0.022 0.00040 0.0000247729 

4 .  R E L A T E D  APPLICATIONS 

In this section we briefly mention two further applications of the above 
methods in the context of  risk theory, the calculation of  ruin probabilities in 
the classical model with Poisson arrivals and the calculation of the mean 
aggregate claim size as a function of  time in the Sparre-Andersen model. 
Details, including numerical examples, can be found in Hermesmeier (1997). 

The probability of ruin as a function of  the initial capital (risk reserve), 
given a specific premium income mechanism, is another central quantity of 
interest in risk theory. Let Yt be the insurance surplus at time t. When a 
claim of size Xi arrives at time Ti then the stochastic process Y = (Y~)f>0 has 
a corresponding downward jump, i.e. YT, -- YTi- = -X i .  The classical ~nodel 
assumes that Y increases linearly between claims with rate c, c is the premium 
income rate. Let 

' / ( u ) = P ( r ,  < 0  for some t > O  I r o = u )  
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be the probability that ruin will eventually occur if the initial risk reserve is u. 
We assume that the claim size distribution has finite mean m c  and that the 
relative safety loading 

c 
0 . - - -  1 

Amc 

is strictly greater than O; ruin is certain if 0 _< O. Let #t be the tail measure 
associated with the claim size distribution #, t,i is the distribution with 
density function x ~ #((x ,  cx~))/mc. Ruin probabilities can be related to the 
distribution of the maximum of a random walk with negative drift, and 
classical random walk theory leads to the representation 

oo 0 (4.1) 
~(u) = ~ ( l - - p ) k p l L ~ k ( ( u ,  Oo)) , with p:--  1 + 0  

k=0 

(see e.g. Asmussen (1987), Chapter XII1). Hence ~ is the tail function of a 
distribution u of the form (I.1) with p,, = (1 - p)"p, i.e. the tail function of a 
compound geometric distribution. 

This situation is essentially the same as the one treated in Section 2, and 
the same arguments apply. Again, for the weights in (4.1) a recursive method 
is available (here too the first step is discretization), transform methods 
apply, aliasing errors arise and can be handled as in Section 2. There is a 
considerable literature relating the asymptotics of ~b to the tails of the claim 
size distribution; see e.g. Embrechts and Veraverbeke (1982). 

In the Sparre-Andersen model the assumption that the claim arrival times 
form a Poisson process is generalized to a situation where the times between 
claim arrivals are independent and identically distributed random variables. 
Let ~0 be the distribution of these interarrival times. From a technical point 
of view, the arrival rate A in Section I is replaced by the distribution #0- Let 
St be the aggregate claim size at time t. Then, as explained in Embrechts, 
Grfibel and Pitts (1993), the stochastic process S = (St)z>0 is a renewal 
reward process, and for the calculation of e.g. the mean ft~nction t ~ ESI 
of S the renewal measure ~-~=0 #~k associated with ~0 is important. This 
corresponds to a situation of type (1.1) with Pk = 1, but the renewal measure 
is not finite as these weights are not summable. One possibility to overcome 
the resulting difficulties is to rewrite the renewal equation in such a way that 
one arrives safely back in gl (see Embrechts, Grfibel and Pitts (1993)), a 
different one is to use the ideas of Section 2 and to consider tilted renewal 
sequences. Finally, the ruin probability function in this more general model 
continues to be of the form (4.1), but #~ depends on /-to and the claim size 
distribution # in a more complicated way. We still have the connection to the 
supremum of a random walk, which also occurs in connection with the 
stationary waiting time in a G/G/I  queue, so that the transform based 
algorithm in Grfibel (1991) can be used. 
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5. C O N C L U S I O N S  A N D  C O M M E N T S  

We have already mentioned in Section 1 that the operation count grows 
quadratically in N if b0, ..., bN-l are evaluated with Panjer recursion. On 
first sight the matrix multiplications in (2.5) and (2.6) seem to be no different, 
but i fN  is e.g. a power of  2, then the fast Fourier transform (FFT) algorithm 
can be used, resulting in an operation count of the order N log N only. 
Bfihlmann (1984) conducted some explicit comparisons and found a timing 
advantage for the FFT-based algorithm from N : 256 onwards. The 15 
years which elapsed since then have seen an enormous increase in computing 
power available on the desktop-we have used transform based algorithms 
with N = 1048576 (= 22°) and more. Recursion with N of  this magnitude is 
not feasible. The significance of large N-values is especially important if high 
quantiles of  the distribution of  the total claim amount are to be calculated 
(or, correspondingly, risk reserves with very small probability of ruin). In the 
situation explained in Section 3, for example, the 0.95-quantile of the total 
claim size distribution is about 10 6, and with discretization intervals of the 
length considered in our numerical example we would still have a noticeable 
discretization error (see Table 1) and already require the value 220 for N. 

Algorithm efficiency can also be decisive in connection with statistical 
analyses. Given that the structural assumptions are accepted as a sensible 
approximation to the real situation, practical usage of  the model would need 
to begin with inference on A and/.t.We refer the reader to Pitts (1994) and the 
references given there for inference on compound distributions. Modern 
statistical techniques such as bootstrap confidence regions require the 
numerical evaluation of  the estimator in a great many cases (resamples), 
which is feasible only if an efficient algorithm is available. 

Finally, shifting from a given measure to a new one that has an 
exponential density with respect to the original measure is an important 
technique in many areas of theoretical and applied probability and statistics. 
It underlies saddle point approximations, it is a standard technique in large 
deviation theory, it can be found in the stochastic analysis treatment of  the 
Black-Scholes formula, and the concept of exponential families in traditional 
mathematical statistics makes use of  this idea. Exponential tilting also 
connects the classes ,9 and 8(7) that were used in Section 2. On the 
transform side this shift corresponds to a shift of  the integration range in the 
complex domain, which we could do here in view of the fact that claim size 
distributions are concentrated on the non-negative half-line. Transform 
methods per se can handle two-sided distributions (in contrast to recursion 
methods), but in the context of exponential tilting this advantage is lost. The 
gain is in the effective elimination of aliasing errors, which makes it possible 
to use transform algorithms if e.g. only low order quantiles are of interest, a 
situation which up to now was considered to be tile exclusive domain of 
recursion algorithms. 
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